
A warm-up with matrices

Ranveer∗

“It is not knowledge, but the act of learning, not the possession of but the act of getting there, which grants

the greatest enjoyment.” Carl Friedrich Gauss

Most of the content in this article is a revision of what we already know. The discussion is brief but sufficient

at a fundamental level. There are many ‘why?’, consider them as interesting exercises, it will help revising the

concepts better.

1 Matrices

Let us recall our school days where we have studied the matrices, the arrangment of numbers (entries) in rows

and columns. For example following is a matrix

Q =


1 0

−1 1

0 −1

 .
The entries of a matrix can be complex numbers but we will restrict ourselves to real numbers, in fact almost

always to just integers. An another matrix [
1 −1 0

0 1 −1

]

has the same entries as Q but the arrangement is different; the rows of the Q become corresponding columns

of the above matrix. By making rows of a matrix M corresponding columns we get another matrix called as

transpose of M , denoted MT . The above matrix is QT . We see in Q there are three rows and two columns.

In general when a matrix has m rows and n column we say the matrix has the order or the dimension m× n,
so Q has order 3× 2. In particular when m = n, we say the matrix is a square matrix of order n. A matrix of

order 1×n is called a row vector of order n; similarly, an n× 1 matrix is a column vector of order n1. The set

of all the column vectors of order n having real entries is denoted by Rn. We denote the i-th row of a matrix

M by M(i, :), and the i-th column by M(:, i). The entry that is in row M(i, :) and column M(:, j) is denoted

∗Email: ranveer@iiti.ac.in, Copyright:©ranveer, CSE, IIT Indore
1When we simply say a matrix M is of order n, it means M is a square matrix of order n× n, and when we say a vector of

order n× 1, it means a column vector order n, that is, a matrix of order n× 1. Although sometimes by a vector v we mean a row
vector but it will be clear from the context.
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by M(i, j). If i = j, we call M(i, j) a diagonal entry, else nondiagonal entry. Often we write M = (mij) to

denote the matrix where M(i, j) = mij .

Recall matrix product of two matrices. The product of Q with QT , that is, QQT is the matrix

L =


1 −1 0

−1 2 −1

0 −1 1

 .
Check whether QQT = QTQ?...Big no!. Matrix product is probably one of the first few counterintuitive

notions in our school. Firstly, for any two matrices A,B it is not necessary that both AB and BA are defined.

Second, even if they both are defined it is not necessary that AB = BA, that is, it is not commutative.

Now let us come back to L. Apart from being a square matrix L has an special arrangement of entries; it is

transpose of itself, that is, L = LT . Such a matrix is called a symmetric matrix. Symmetric matrices are very

interesting and useful matrices, they are used in plethora of applications. A trivial symmetric matrix where

all the nondiagonal entries are zero is called a diagonal matrix. We denote a diagonal matrix D = (dij) of

order n by diag(d11, . . . , dnn), where dii is the i-th diagonal entry. For example diag(1, 2, 1) is the matrix

D =


1 0 0

0 2 0

0 0 1

 .
An typical example of a diagonal matrix is the identity matrix In = diag(1T ), where 1 is all-one vector of

order n.

Exercise 1.1. Prove that for any two square matrices of order n if AB = In, then BA = In.

x
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v

(a) Dependent vectors

x

y

u

v

(b) Independent vectors

x

y

u
v

(c) Orthogonal vectors

Figure 1: Different possibilities for vectors u, v. If u, v are orthogonal then they are also independent.
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2 Matrix multiplication as linear combinations

The multiplication of a matrix with a column vector is quite interesting. Consider Q and multiply it by

column vector

[
2

5

]
. Most likely someone will write immediately that


1 0

−1 1

0 −1


[

2

5

]
=


(1× 2) + (0× 5)

(−1× 2) + (1× 5)

(0× 2) + (−1× 5)

 =


2

3

−5

 .
It is correct, now let us see the above product with a different way; the output vector [2, 3,−5]T can be

written as

2


1

−1

0

+ 5


0

1

−1

 ,
that is, it is the result of adding 2 times the first column of Q with 5 times the second column. What if we

multiply Q with the matrix

[
2 3

5 2

]
? The first column of the resulting matrix will be as above but the second

column will be

3


1

−1

0

+ 2


0

1

−1

 .
Suppose we have vectors v1, . . . , vn and scalars α1, . . . , αn, not all zero, then the vector α1v1 + · · · + α2vn

is said to be a linear combination of v1, . . . , vn. The scalars α1, . . . , αn, are the coefficients of the linear

combination.

Suppose we have matrices A of order m×n and B of order n× p. Its now easy to see that in AB the columns

are the linear combinations of the columns of A and coefficients are given by the columns of B. We can

think of product AB as linear combinations of rows rather than columns. In AB the rows are the linear

combinations of the rows of B and coefficients are given by the rows of A. We will see in many occasions that

visualising the matrix product as linear combinations of rows or columns is quite handy.

Exercise 2.1. Let

A =


2 −1 3

4 −1 0

0 3 1

 , B =


3 0 −1

2 1 −3

5 1 −1

 .
Write down AB as (a) linear combination of rows, (b) linear combination of columns.

3 Linear independence, vector space, basis

Carrying forward the discussion on linear combination let us recall an interesting phenomenon of linear

dependency of vectors. A set of vectors v1, . . . , vn is said to be linearly dependent set, if there exist scalars

α1, . . . , αn, not all zero, such that

α1v1 + · · ·+ α2vn = 0. (1)
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Check that columns of Q and the output vector [2, 3,−5]T form a set of linearly dependent vectors. If

the vectors v1, . . . , vn are not dependent, they are called independent vectors. For a given set of vectors

V = {v1, . . . , vk} we can form a set S of all the vectors which are some linear combination of vectors in V .

The set S is called the vector space of V . For example the vector space for a set V =

{[
1

0

]
,

[
0

2

]
,

[
1

2

]}
is

the 2D space as every vector in 2D plane can written as some combination of vectors in V . But see that the

set V ′ =

{[
1

0

]
,

[
0

2

]}
can also generate (or span) the 2D space using linear combinations of its vectors. In

this context the vector

[
1

2

]
is redundant. For a vector space a maximal independent set of vectors whose

linear combinations can generate all vectors in the vector space is called it basis. In the above example V ′ is

basis for 2D while V is not a basis as it is not a maximal independent set. Note that there can be several

basis for a vector space, but the number of vectors in every basis is the same. This number is called the

dimension of the vector space.

Exercise 3.1. Find a maximal set of pair-wise independent vectors from the following vectors.
1

1

−1

 ,


1

0

−1

 ,


2

1

0

 ,

−1

−1

1

 ,

−1

0

1

 .
Exercise 3.2. Find a value of x for which the following set of vectors form a basis for R3.

V =

{
1

0

x

 ,

x

0

0

 ,


1

x

1


}
.

3.0.1 Cauchy–Schwarz inequality, orthogonal vectors

Following inequality about the dot product of two vectors is quite helpful to know. The proof is given here

(Theorem 1.1).

Cauchy–Schwarz inequality

Theorem 3.3. For any two vectors u, v ∈ Rn

|uT v| ≤
√
uTu
√
vT v,

where, |.| denotes the absolute value. The quantity
√
uTu is known as 2-norm of u and is denoted by ||u||.

Thus Cauchy–Schwarz inequality is often stated as

|uT v| ≤ ||u||||v||.
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Exercise 3.4. Prove that equality in the Cauchy-Schwarz inequality holds if and only if u = cv, where c is

some scalar.

It is quite fruitful to know that if the dot product of two nonzero vectors u, v, that is, uT v is 0, then they are

always independent (why?), such vectors are known as orthogonal vectors. Recall our 3D-coordinate space

with famous x-axis, y-axis, z-axis, pick one vector along each of these axes, check that they are pairwise

orthogonal. In general, if v1, . . . , vn are pairwise orthogonal vectors, they form an independent set of vectors

(why?). Corresponding to a vector space if a basis has vectors which are all pair wise orthogonal to each other,

then this basis is called as orthogonal basis (its callled orthonormal basis if in addition every vector has norm

1.)

Exercise 3.5. Find a vector v ∈ Rn which is orthogonal to the vectors
2

−1

3

 ,


2

7

1

 .
Exercise 3.6. Prove that vectors u, v are orthogonal if and only if ||u+ v|| = ||u− v||.

Exercise 3.7. Find a value of x for which the following set of vectors form an orthogonal basis for R3.

Convert the orthogonal basis into a orthonormal basis.

V ′ =

{
x

1

1

 ,

−2

x

1

 ,


0

1

−x


}

4 Row space, column space, rank

Consider a general m× n matrix M with columns v1, . . . , vn, and a nonzero vector x = [α1, . . . , αn]T , we can

write

Mx = α1v1 + · · ·+ αnvn.

So v1, . . . , vn,Mx are linearly dependent, that is, Mx is a linear combination of v1, . . . , vn. The set of all

possible vectors which can be written as a linear combination of columns (rows) of M is called column (row)

space of M . The dimension of column (row) space of a matrix is called its column (row) rank. Suppose M is

20× 50 matrix. What could be the maximum row rank of M? Its obvious that it could be at most 20. But

what about column rank; what could be the maximum column rank of M? You might tempted to say that it

can be at most 50. But it is significantly wrong!. The column rank will also be at most 20. In fact even more

surprise lies ahead. Suppose the row rank of M is 15, what can we say about the column rank of M? The

answer is that the column rank must also be 15. For any matrix the row rank and the column rank are the

same. This number is called the rank of M , denoted rankM .
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4.1 Why row rank = column rank?

Consider a m× n matrix with columns v1, . . . , vn. We can write

M =


| | . . . |
v1 v2 . . . vn

| | . . . |

 .
Suppose the column rank of M is p. That means there exist basis vectors b1, . . . , bp and each column vector

of M can be written as some linear combination of these basis vectors. Suppose vi = α1ib1 + · · ·+ αkibp, (the

coefficients α1i, . . . αpi can not be simultaneously zero) and let ai = [α1i, α2i, . . . , αpi]
T , i = 1, . . . , n. Then we

can write

M =


| | . . . |
v1 v2 . . . vn

| | . . . |

 =


| | . . . |
b1 b2 . . . bp

| | . . . |


︸ ︷︷ ︸

B


| | . . . |
a1 a2 . . . an

| | . . . |


︸ ︷︷ ︸

A

.

Now think about the row rank of matrix M . Observe that any row of M is a linear combination of rows in A

and the coefficients are given by the rows in B. (In particular, i-th row of M is a linear combination of rows

of A, and the i-th row of B give the corresponding coefficients.) This implies that row rank of M is at most p

which is the column rank.

Now suppose the row rank of M is q. Now visualise M in terms of its rows. Let u1, u2, . . . , um be its rows.

As the row rank is q, there exist basis vectors y1, . . . , yq and each row vector of M can be written as some

linear combination of these basis vectors. Suppose ui = βi1y1 + · · ·+ βikyq, (again, the coefficients βi1, . . . βiq

can not be simultaneously zero) and let xi = [βi1, βi2, . . . , βiq], i = 1, . . . ,m. Then we can write

M =


− u1 −
− u2 −
...

...
...

− um −

 =


− x1 −
− x2 −
...

...
...

− xm −


︸ ︷︷ ︸

X


− y1 −
− y2 −
...

...
...

− yq −


︸ ︷︷ ︸

Y

Now think about the column rank of matrix M . Observe that any column of M is a linear combination of

columns in X and the coefficients are given by the columns in Y . (In particular, i-th column of M is a linear

combination of columns of X, and the i-th column of Y gives the corresponding coefficients.) This implies

that column rank of M is at most q which is the row rank.

Combining the facts that the row rank can be at most column rank, and column rank can be at most rank

rank we arrive at the conclusion that both the ranks must be equal.

Theorem 4.1. For any matrix the row rank and the column rank are the same.

Exercise 4.2. Find the row rank and the column rank of the following matrix and verify that both are the
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same [
1 −1 0

2 −1 4

]
.

Exercise 4.3. Prove that if M = BC, then rankM ≤ min(rankB, rankC).

5 Null Space

Consider the case when Mx is a zero vector, that is,

Mx = 0. (2)

Is this possible even if M,x are nonzero matrices? Think about two real number a, b such that ab = 0. We

know that this is possible when only at least one of a, b is zero. Can we generalize this to matrices and say

that at least one of M,x must be a zero matrix for Mx = 0? No!. Multiply QT by all-one vector [1, 1, 1]T it

gives a zero vector [0, 0, 0]T . The set of all x satisfying Equation (2) is called null space of M . Vector [1, 1, 1]T

is in the null space of QT . The minimal number of vectors whose linear combinations form the null space of

M is called the nullity of M , denoted, nullM . Another fundamental fact is

rankM + nullM = n,

look here for a proof.

Next, suppose x is a nonzero vector, under what condition Mx = 0? Notice that this is the same as the form

(1). When M is a square matrix what does this imply? Here comes our old strange old mate, the determinant!

It is possible only when the determinant of M , denoted detM is zero. Recall that Mx = 0 says that the

columns of M are linearly dependent which implies detM = 0, to figure out why? Its time to revisit our

old mate, the determinant. We had already seen the applications of determinants in solving the system of

linear equations, finding the area of 2D figures and volume of 3D figures. In, fact determinants can determine

the areas or volumes of figures resulting after linear transformation, see Figure 2. We will see many more

applications of determinants. The following quote on determinant by mathematician J. J. Sylvester tells its

great importance.

For what is the theory of determinants? It is an algebra upon algebra; a calculus which enables us to combine

and foretell the results of algebraical operations, in the same way as algebra itself enable us to dispense with the

performance of the special operations of arithmetic. All analysis must ultimately clothe itself under this form.

6 Determinant (definition by Laplace expansion)

We know that

det

[
a b

c d

]
= ad− bc (3)
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Figure 2: 2D plane: on projecting (multiplying) each point in the left shaded region with area a by matrix A
and we get the shaded region on right with the area |det(A)|a. (In 3D it happens for volume.)

and

det


a b c

d e f

g h i

 = a det

[
e f

h i

]
− bdet

[
d f

g i

]
+ cdet

[
d e

g h

]

= aei− afh− bdi+ bgf + cdh− ceg.

(4)

In the above equation we expanded the determinant of the 3× 3 matrix with respect to the first row. This

method is called Laplace expansion which is more formally defined as follows. Let M = (mij) be a matrix of

order n, and let M(i|j) be the matrix that results from M by removing i-th row and j-th column. Then for

any i the following recurrence relation holds

detM =

n∑
j=1

(−1)i+jmij detM(i|j). (5)

6.1 Elementary matrices

Recall that the following elementary row operations; these are at the heart of determinant.

1. Exchanging two rows: the determinant change its sign.

2. Multiplying a row by a nonzero constant c: the determinant get multiplied by c.

3. Adding to a row a multiple of another row: the determinant is unchanged.

If the rows (hence the columns) of M are linear dependent, by using these row operations we can make a row

to be zero, which implies detM = 0. Note that all the three row operations on any matrix leave the rank of

the matrix unchanged.

A matrix resulting after applying one row operation to the identity matrix I is known as an elementary matrix.
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Those which involve switching rows of the identity matrix are called permutation matrices. Performing any

of the three row operations on a matrix A is equivalent to take the product EA, where E is the elementary

matrix obtained by using the desired row operation on the identity matrix. Thus

rankEA = rankA (6)

(similarly rankAE = rankA). Also detE 6= 0 (why?). Another important fact that follows from the elementary

row operations is that for any square matrix M

detEM = detE detM. (7)

Recall that if rankM , that is, all the rows are independent, then there exist elementary matrices, E1, . . . , Ek

such that

Ek . . . E1M = I. (8)

The matrix Ek . . . E1 is known as the inverse of M , denoted M−1. Thus using Equation 7 detM 6= 0. For a

square matrix M the inverse exists if and only detM 6= 0, in this case we call M to be invertible. Since inverse

of an elemantary matrix is an elementary matrix, using Equation 8 any invertible matrix can be written as

the product of elemenatry matrices. Thus using 6 we see that for any invertible matrix M ,

rankMA = rankA, rankBM = rankB, (9)

where A,B are any suitable order matrices. The above discussion leads to the following important relation on

determinant and determinant of the product of two square matrices A,B of the same order.

detAB = detAdetB. (10)

Exercise 6.1. Find the null spaces of the following n× n matrices
1 1 . . . 1

1 1 . . . 1
...

...
. . .

...

1 1 . . . 1

 ,


0 1 . . . 1

1 0 . . . 1
...

...
. . .

...

1 1 . . . 0

 ,

n 1 . . . 1

1 n . . . 1
...

...
. . .

...

1 1 . . . n


Exercise 6.2. A minor of a p× q matrix M is the determinant of any k × k submatrix of M . Prove that

rankM equals the size of largest nonzero minor of M .

Exercise 6.3. Using determinants find the rank of the following matrix.
1 1 2 3

4 1 5 6

7 1 8 9


Exercise 6.4. If M is a nonsingular matrix, prove that detA−1 = 1

detA .
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Exercise 6.5. Let A and C be square matrices. Prove that

det

[
A B

0 C

]
= detAdetC.

Exercise 6.6. Prove that if M is a p× q matrix, then detMTM ≥ 0.

Exercise 6.7. Prove that for a p× q matrix M , detMTM > 0 if and only if rankA = q.

7 Eigenvalues and eigenvectors

Till now we have seen plenty of examples for multiplying a matrix with a vector. If M is a square matrix of

order n and x is a vector of order n, then Mx is some vector of order n. Usually x and Mx are oriented in

different directions. But there are special vectors x such that both x and Mx have the same direction or just

opposite direction. In other words, Mx is some scaling of x. These special vectors are known as eigenvectors

of M , and the scaling factor is known as the eigenvalue. Formally we have

Mx = λx. (11)

The scalar λ is the eigenvalue, and x is a corresponding eigenvector. Notice that any nonzero multiple of x is

still an eigenvector corresponding to the eigenvalue λ. Thus most often, we consider x having unit length,

that is, xTx = 1, also called a normal vector.

x

y

u =

[
1
1

]
Mu

(a) u is an eigenvector, λ = 3

x

y

u =

[
−1
1

]

Mu

(b) u is an eigenvector, λ = −1

x

y

u =

[
1
0

]
Mu

(c) u is not an eigenvector

Figure 3: Here M =

[
1 2
2 1

]
. Observe that when u is an eigenvector u and Mu are along the same line, that

is, Mu is a scaled version of u.

The eigenvalues, eigenvectors play a significant role in understanding various phenomena in many branches of

science. How to find out the eigenvalues and eigenvectors? In Equation (11) the only thing that we know is

M ; the other two are unknown. But somehow, if we know one of λ, x we can know the other. We can write

(M − λI)x = 0.

It has the same form as Equation (2). It implies that det(M − λI) = 0. This gives a polynomial of λ having

degree n, we call this polynomial as the characteristic polynomial. The n roots λ1, . . . , λ2 of this polynomial
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are the eigenvalues of M . The set of all the eigenvalues are known as the spectrum of the matrix. We may

factor the characteristic polynomial as

det(M − λI) = (λ1 − λ) . . . (λn − λ).

The relationship between the eigenvalues and the determinants of submatrices is quite crucial to know. A

principal submatrix of M is a submatrix formed by a set of rows and the corresponding set of columns. A

principal minor of M is the determinant of a principal submatrix. We state the following theorem which tells

a relationship between eigenvalues and the principal minors. A proof is given here.

Theorem 7.1. The sum of product of the eigenvalues, of M , taken k at a time equals the sum of k × k
principal minors of M .

For k = 1, this implies that the sum of all the eigenvalues is equal to the trace of M (the sum of the diagonal

entries). For k = n, this implies that the product of the eigenvalues is equal to the determinant of M .

Exercise 7.2. Find the eigenvalues of

[
1 2

k 1

]
in terms of k. Also find an eigenvector corresponding to each

of the eigenvalues.

Exercise 7.3. Find the eigenvalues and eigenvectors of the following n× n matrices
n 0 . . . 0

0 n . . . 0
...

...
. . .

...

0 0 . . . 0

 ,


0 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . n

 ,


0 1 . . . 1

1 0 . . . 1
...

...
. . .

...

1 1 . . . 0

 ,

n 1 . . . 1

1 n . . . 1
...

...
. . .

...

1 1 . . . n


Exercise 7.4. Prove that, if v1, v2, . . . , vk are the eigenvectors of M associated with the same eigenvalue λ,

then any nonzero linear combination

v = α1v1 + α2v2 + · · ·+ αkvk

is also an eigenvector associated with λ.

Exercise 7.5. For a square matrix M , prove that M and MT have the same eigenvalues.

Exercise 7.6. For any Am×n, Bn×m matrices, prove that the nonzero eigenvalues of AB and BA are the

same.

8 Eigenvalues, eigenvectors of symmetric matrices

Symmetric matrices display very interesting properties with the eigenvalues and eigenvector. The eigenvalues

of a symmetric matrix are real (why?). (Note that an eigenvector of a symmetric matrix can have complex

entries, but we can also choose the eigenvectors to be real.)
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Moreover, for distinct eigenvalues of a symmetric matrix, the orthogonality of eigenvectors comes for free.

Consider a symmetric matrix M with two distinct eigenvalues α, β, and the corresponding eigenvectors x, y,

respectively. That is, we have

Mx = αx, (12)

My = βy. (13)

On both the side of Equation (12), take dot product with y, similarly, on both the side of Equation (13), take

dot product with x, we get

yTMx = αyTx, (14)

xTMy = βxT y. (15)

Taking transpose on both the sides of Equation (14), and then subtracting it from Equation (15) we get

(α− β)(xT y) = 0, which implies xT y = 0, that is, x, y are orthogonal.

Theorem 8.1. For a symmetric matrix the eigenvectors associated with distinct eigenvalues are orthogo-

nal.

8.1 Orthogonal diagonalization

In fact for symmetric matrices we can say more than what Theorem 8.1 conveys. Even if the eigenvalues

are not distinct we can choose associated eigenvectors to be orthogonal. The next theorem states this fact,

a proof is given here. It is also known as the spectral theorem, and the decomposition it gives is known as

eigenvalue decomposition of a symmetric matrix.

Orthogonal diagonalization (spectral theorem)

Theorem 8.2. Let M be a symmetric matrix. Then

M =


| | . . . |
v1 v2 . . . vn

| | . . . |



λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn




− vT1 −
− vT2 −
...

...
...

− vTn −

 , (16)

that is, M = V DV T , where V is the matrix with columns v1, v2, . . . , vn which are the eigevectors of M

corresponding to the eigenvalues λ1, . . . , λn, and V TV = I, D = diag(λ1, . . . , λn).
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8.2 The interlace theorem

Consider the following symmetric matrix A and a matrix B which is a principal submatrix of A.

A =


−2 4 2 −4

4 4 2 1

2 2 0 −3

−4 1 −3 4

 , B =


−2 4 2

4 4 2

2 2 0

 .
The eigenvalues of A are λ1 = 8.62, λ2 = 5.03, λ3 = −1.95, λ4 = −5.70, and the eigenvalues of B are

β1 = 7.03, β2 = −0.81, β3 = −4.23. Let us plot these eigenvalues on the number line.

λ1λ2λ3λ4

β1β2β3

0

Any βi is trapped between λi and λi+1; we have λi+1 ≤ βi ≤ λi for i = 1, 2, 3. Now let us consider another

principal submatrix

[
4 2

2 0

]
of A. Its eigenvalues are β1 = 4.83, β2 = −0.83. Let us plot these too on the

number line.

λ1λ2λ3λ4

β1β2

0

This time β1 ≤ λ1 but also β1 ≤ λ2. However, β1 ≥ λ3. So β1 is infact trapped between λ1 and λ3. The

following well celebrated theorem on symmetric matrices relates the eigenvalue of a matrix with the eigenvalues

of principal submatrices. A proof is given here.

8.2.1 Cauchy interlace theorem (Eigenvalue interlacing theorem)

Theorem 8.3. Let M be a symmetric matrix of order n, and B be its principal submatrix of order

m, where, m < n. Suppose the eigenvalues of A are λ1 ≥ · · · ≥ λn and the eigenvalues of B are

β1 ≥ · · · ≥ βm. Then

λi ≥ βi ≥ λi+n−m, for i = 1, . . . ,m.

In particular if m = n− 1, then

λ1 ≥ β1 ≥ λ2 ≥ · · · ≥ βn−1 ≥ λn.
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8.3 Definite, semi-definite matrices

Now consider the following symmetric matrix

M =


3 0 −1 −3

0 7 1 −1

−1 1 2 2

−3 −1 2 6

 .

Its eigenvalues are λ1 = 8.76, λ2 = 7.13, λ3 = 1.35, λ4 = 0.76. On the number line they are placed as follows.

λ1λ2λ3λ40

All the eigenvalues of M are nonnegative. A symmetric matrix whose all the eigenvalues are nonnegative is

known as positive semi-definite matrix, and when the eigenvalues are positive it is known as positive definite

matrix. Check that M is positive definite. These matrices have very high importance for different applications

and display beautiful properties. We will see two equivalent criteria for a matrix to be positive semidefinite or

definite.

Let M be a symmetric positive semidefinite matrix of order n. Using 8.2 we can write M = V DV T ,

where V is the matrix with columns v1, v2, . . . , vn which are the eigenvectors of M corresponding to the

eigenvalues λ1, . . . , λn, and V is a orthogonal matrix. Since the eigenvalues are nonnegative we can write

D = D
1
2D

1
2 , where D

1
2 is a diagonal matrix with i-th diagonal entry equals to

√
λi. Let V̂ = V D

1
2 , then we

can write M = V D
1
2D

1
2V T = V̂ V̂ T . It implies that for any nonzero vector x, we have xTMx = xT V̂ V̂ Tx =

(V̂ Tx)T (V̂ Tx) ≥ 0. We will see that this is a very useful information. When M is positive definite, that is, all

the eigenvalues are positive, then V̂ has rank n and so V̂ Tx is can not be a zero vector unless x is zero vector.

Since x is nonzero this implies that xTMx > 0.

Now, assume that xTMx ≥ 0, for any symmetric matrix M and nonzero vector x. Using the fact that the

smallest eigenvalue λn of M is equal to

λn = min
||x||=1

xTMx = min
xTMx

||x||2
.

(a proof is given here.) Since xTMx ≥ 0, we have, λn ≥ 0 which implies that all the eigenvalues are nonnegative.

If xTMx > 0, it implies that all the eigenvalues are positive. Thus we state the following theorem.

Theorem 8.4. Let M be a symmetric matrix. For any nonzero vector x,

1. xTMx ≥ 0 if and only if all the eigenvalues of M are nonnegative. (M is called positive semi-definite

matrix.)

2. xTMx > 0 if and only if all the eigenvalues of M are positive. (M is called positive definite matrix.)

Exercise 8.5. Prove that the rank of a symmetric matrix is equal to the number of its nonzero eigenvalues.
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Exercise 8.6. Let A be a n×m matrix with n ≤ m, then prove that ATA is a positive semi-definite matrix.

Further show that each eigenvalue of AAT is also an eigenvalue of ATA, and the rest of the m−n eigenvalues

are zero.

Exercise 8.7. Show that traceATA = 0 if and only if the eigenvalues of ATA are zero.

Exercise 8.8. For the matrix

M =


2 −1 3

−1 0 4

3 4 1


compute an orthogonal matrix V and a diagonal matrix D such that M = V DV T .

Exercise 8.9. Show that for any matrix Am×n, nullspaces of A and ATA are the same. Also, the column

spaces of A and ATA are the same.

Theorem 8.10. For the matrix

M =


0 −1 2

−1 0 3

2 3 1


compute the eigenvalues, and verify the Cauchy interlace theorem by computing the eigenvalues of its principal

submatrices.
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