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1 Cauchy—Schwarz inequality
Theorem 1.1. For any two vectors u,v € R
o] < Jull[[o]].

Proof. Let {v1,vq,...v,} be the set of orthogonal vector v; € R™, forming a basis of R", where v; = v (we
can always form such a set). Let us write u as a linear combination

U= 1V + QU2 + ... + QpUp,
a; € R. Then as v}v; >0,

n
ulu = E a?v?vi > O[%UTU.
i=1

o < uTu
o \| ——-
=V Ty

T
[T u| = |oy[vTv < LTy = VaTuVoTo = [lul[|v]]-
v

T

Hence,

Also, vTu = ayvTv. Thus

It completes the proof. O

2 The Spectral Theorem (Orthogonal diagonalization of symm-
teric matrices)

Theorem 2.1. Let M be a symmetric matriz of order n. Then
M = VDV, equivalently, VI MV = D,

where V' is a orthogonal matriz, (that is, VIV = VVT = I) with columns vi,vs,...,v, which are the
eigenvectors of M corresponding to the eigenvalues A1, ..., A\n, and D = diag(A1, ..., \p).

Proof. We prove the theorem using induction on n. The case n = 1 is true, since M = 1M17. Assume that
the theorem is true when the order of matrix is n — 1.

Consider the case when the order of M is n. Using the eigenvector vy, let us make an orthonormal basis
of R™, suppose this be S = {vy,x2,...,2,}. Note that since M is symmetric, for any i =2,...,i=n

(Mz)Tvy = 2l MTvy = 2] Moy = \jzlv, = 0. (1)
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Now, let @Q be an orthogonal matrix whose columns are vy, x2, ..., %,. Then using 1

- of -
I T I
QTMQ = . . AMvy Mzy ... Mz,

Note that M is a symmetric matrix of order n—1. By induction hypothesis there exists an orthogonal matrix
@ such that QT M@ = D is a diagonal matrix. Considering the matrix

1 0
r=lo g
we see that the product
1 0]"[xn o0][1 o
rratwer = [o ol [5 3illo o) @
A0
{01 b] )

is a diagonal matrix. As PTQTQP = I, matrix QP is an orthogonal matrix. By (2) QP contains the
eigenvectors of M and the corresponding eigenvalues are in the diagonal matrix PTQTMQP. It completes
the proof. O
3 Cauchy’s Interlace Theorem

Theorem 3.1. Let M be a symmetric matriz of order n, and B be its principal submatrixz of order m, where,
m < n. Suppose the eigenvalues of A are \y > ... > A\, and the eigenvalues of B are f1 > ... > By. Then

A > B > Megn—m, fork=1,...,m.

Proof. For some suitable matrices X, Z we can write

B XT
M= [ Bx ] .
Let z1,...,x, be eigenvectors of A corresponding to the eigenvalues Ay > ... > \,. And let y1,...,Yn

be eigenvectors of B corresponding to the eigenvalues 81 > ... > 3,,. Let us define the following two vector
spaces.

1. W = span(y,...,yr). Note that

T
r* Bx
= mi 4
BT oew 2T ()
2. V = span(zxg, ..., z,). Note that
T
' Mz
\p =
FEIS AT 5)

Construct a new vector space



Since rankV =n — k+ 1, and rank W = k, there exists w = {O

w] € VN W for some w € W. Then

Using (4), (5)

The proof of the other inequality is similar. Now let us define the following two vector spaces.

1. W = span(yk, .. .,Ym). Note that
2T Bz
— - 6
P T (6)

2. V =span(x1,...,Tptn—m). Note that

\ o aTMx
ktn—m = Min
tnom T oev 2T

Construct a new vector space

W{m GR"}, wew

Since rank V = k 4+ n —m, and rank W = m — k + 1, there exists @ = {w} e VAW for some w € W.

0
Then as before we have @’ M@ = w? Bw. Using (6), (7)
oMo w? Bw

Aoy < AW < B,

It completes the proof. O
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