
Some proofs on matrices

Ranveer∗

1 Cauchy–Schwarz inequality

Theorem 1.1. For any two vectors u, v ∈ Rn

|uT v| ≤ ||u||||v||.

Proof. Let {v1, v2, . . . vn} be the set of orthogonal vector vi ∈ Rn, forming a basis of Rn, where v1 = v (we
can always form such a set). Let us write u as a linear combination

u = α1v + α2v2 + . . .+ αnvn,

αi ∈ R. Then as vTi vi ≥ 0,

uTu =

n∑
i=1

α2
i v

T
i vi ≥ α2

1v
T v.

Hence,

|α1| ≤
√
uTu

vT v
.

Also, vTu = α1v
T v. Thus

|vTu| = |α1|vT v ≤
√
uTu

vT v
vT v =

√
uTu
√
vT v = ||u|||v||.

It completes the proof.

2 The Spectral Theorem (Orthogonal diagonalization of symm-
teric matrices)

Theorem 2.1. Let M be a symmetric matrix of order n. Then

M = V DV T , equivalently, V TMV = D,

where V is a orthogonal matrix, (that is, V TV = V V T = I) with columns v1, v2, . . . , vn which are the
eigenvectors of M corresponding to the eigenvalues λ1, . . . , λn, and D = diag(λ1, . . . , λn).

Proof. We prove the theorem using induction on n. The case n = 1 is true, since M = 1M1T . Assume that
the theorem is true when the order of matrix is n− 1.

Consider the case when the order of M is n. Using the eigenvector v1, let us make an orthonormal basis
of Rn, suppose this be S = {v1, x2, . . . , xn}. Note that since M is symmetric, for any i = 2, . . . , i = n

(Mxi)
T v1 = xTi M

T v1 = xTi Mv1 = λ1x
T
i v1 = 0. (1)
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Now, let Q be an orthogonal matrix whose columns are v1, x2, . . . , xn. Then using 1

QTMQ =


− vT1 −
− xT2 −
...

...
...

− xTn −


 | | . . . |
λ1v1 Mx2 . . . Mxn
| | . . . |


=

[
λ1 0

0 M̂

]
.

Note that M̂ is a symmetric matrix of order n−1. By induction hypothesis there exists an orthogonal matrix
Q̂ such that Q̂T M̂Q̂ = D̂ is a diagonal matrix. Considering the matrix

P =

[
1 0

0 Q̂

]
,

we see that the product

PTQTMQP =

[
1 0

0 Q̂

]T [
λ1 0

0 M̂

] [
1 0

0 Q̂

]
(2)

=

[
λ1 0

0 D̂

]
(3)

is a diagonal matrix. As PTQTQP = I, matrix QP is an orthogonal matrix. By (2) QP contains the
eigenvectors of M and the corresponding eigenvalues are in the diagonal matrix PTQTMQP . It completes
the proof.

3 The largest and the smallest eigenvalue of a symmetric matrix
(a nice optimization problem)

Theorem 3.1. Let M be a symmetric matrix of order n with the eigenvalues λ1 ≥ · · · ≥ λn . Then

1. λ1 = max||x||=1 x
TMx = maxx 6=0

xTMx
||x||2 .

2. If for some x we have xTMx = λ1||x||2, then Mx = λ1x

Proof. Let v1, . . . , vn be unit eigenvectors corresponding to the eigenvalues λ1 ≥ · · · ≥ λn of M .

1. Let us write x as a linear combination of v1, . . . , vn,

x = α1v1 + · · ·+ αnvn.

Let V = [v1, . . . , vn], α = [α1, . . . , αn]T , then x = V α.

Then

||x||2 = αTV TV α = αTα =

n∑
i=1

α2
i ,

and

xTMx =

n∑
i=1

λiα
2
i .

We see that

xTMx =

n∑
i=1

λiα
2
i ≤ λ1

n∑
i=1

α2
i = λ1||x||2.

Since we know that
vT1 Mv1 = λ1||v1||2.
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This implies

λ1 = max
||x||=1

xTMx = max
x 6=0

xTMx

||x||2
.

2. Consider xTMx = λ1||x||2. Then,

xTMx =

n∑
i=1

λiα
2
i = λ1

n∑
i=1

α2
i .

Suppose that λ1 = · · · = λk > λk+1 ≥ · · · ≥ λn. Then it implies that αk+1 = · · · = αn = 0, that is

x = α1v1 + · · ·+ αkvk.

Hence, Mx = λ1x.

Theorem 3.2. Let M be a symmetric matrix of order n. The smallest eigenvalue λn of M is equal to

min
||x||=1

xTMx = min
xTMx

||x||2
.

Proof. Let v1, . . . , vn be unit eigenvectors corresponding to the eigenvalues λ1 ≥ · · · ≥ λn of M . Consider
any vector x, and write it as a linear combination

x = α1v1 + · · ·+ αnvn.

Then

xTMx =

n∑
i=1

λiα
2
i ≥ λn

n∑
i=1

α2
i = λn||x||2.

Since Mvn = λnvn,

λn = min
||x||=1

xTMx =
xTMx

||x||2
.

4 Cauchy’s Interlace Theorem

Theorem 4.1. Let M be a symmetric matrix of order n, and B be its principal submatrix of order m, where,
m < n. Suppose the eigenvalues of A are λ1 ≥ . . . ≥ λn and the eigenvalues of B are β1 ≥ . . . ≥ βm. Then

λk ≥ βk ≥ λk+n−m, for k = 1, . . . ,m.

Proof. For some suitable matrices X,Z we can write

M =

[
B XT

X Z

]
.

Let x1, . . . , xn be eigenvectors of A corresponding to the eigenvalues λ1 ≥ . . . ≥ λm. And let y1, . . . , yn
be eigenvectors of B corresponding to the eigenvalues β1 ≥ . . . ≥ βm. Let us define the following two vector
spaces.

1. W = span(y1, . . . , yk). We have

βk = min
x∈W

xTBx

xTx
(4)

2. V = span(xk, . . . , xn). We have

λk = max
x∈V

xTMx

xTx
(5)
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Construct a new vector space

W̃ =

{[
w
0

]
∈ Rn

}
, w ∈W.

Since rankV = n− k + 1, and rank W̃ = k, there exists w̃ =

[
w
0

]
∈ V ∩ W̃ for some w ∈W . Then

w̃TMw̃ =
[
wT 0

] [B XT

X Z

] [
w
0

]
= wTBw.

Using (4), (5)

λk ≥
w̃TMw̃

w̃T w̃
=
wTBw

wTw
≥ βk.

The proof of the other inequality is similar. Now let us define the following two vector spaces.

1. W = span(yk, . . . , ym). Note that

βk = max
x∈W

xTBx

xTx
(6)

2. V = span(x1, . . . , xk+n−m). Note that

λk+n−m = min
x∈V

xTMx

xTx
(7)

Construct a new vector space

W̃ =

{[
w
0

]
∈ Rn

}
, w ∈W.

Since rankV = k + n −m, and rank W̃ = m − k + 1, there exists w̃ =

[
w
0

]
∈ V ∩ W̃ for some w ∈ W .

Then as before we have w̃TMw̃ = wTBw. Using (6), (7)

λk+n−m ≤
w̃TMw̃

w̃T w̃
=
wTBw

wTw
≤ βk.

It completes the proof.

For further references see Daniel A. Spielman, Embree.
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http://www.cs.yale.edu/homes/spielman/561/2012/lect03-12.pdf
https://www.cmor-faculty.rice.edu/~caam440/chapter2.pdf
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