Some proofs on matrices

Ranveer*

1 Cauchy—Schwarz inequality
Theorem 1.1. For any two vectors u,v € R"”
o] < [Jul|[]v]].

Proof. Let {v1,va,...v,} be the set of orthogonal vector v; € R™, forming a basis of R", where v; = v (we
can always form such a set). Let us write u as a linear combination

U= 1V + QU2 + ...+ QpUp,
a; € R. Then as viTvi >0,
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Hence,

Also, vTu = a;vTv. Thus

It completes the proof. O

2 The Spectral Theorem (Orthogonal diagonalization of symm-
teric matrices)

Theorem 2.1. Let M be a symmetric matriz of order n. Then
M = VDV, equivalently, VI MV = D,

where V is a orthogonal matriz, (that is, VIV = VVT = I) with columns vi,vs,...,v, which are the
eigenvectors of M corresponding to the eigenvalues A1, ..., Ay, and D = diag(Ay, ..., \p).

Proof. We prove the theorem using induction on n. The case n = 1 is true, since M = 1M17. Assume that
the theorem is true when the order of matrix is n — 1.

Consider the case when the order of M is n. Using the eigenvector v1, let us make an orthonormal basis
of R™, suppose this be S = {v1,23,...,z,}. Note that since M is symmetric, for any i = 2,...,i =n

(Mz)"v, = 2l MT v, = 2l Moy = \aTv = 0. (1)
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Now, let @Q be an orthogonal matrix whose columns are vy, x2, ..., %,. Then using 1
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QTMQ = . . . Mvy Mzy ... Mx,
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Note that M is a symmetric matrix of order n—1. By induction hypothesis there exists an orthogonal matrix
@ such that QT M@ = D is a diagonal matrix. Considering the matrix
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we see that the product
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is a diagonal matrix. As PTQTQP = I, matrix QP is an orthogonal matrix. By (2) QP contains the
eigenvectors of M and the corresponding eigenvalues are in the diagonal matrix PTQT MQP. It completes
the proof. O]

3 The largest and the smallest eigenvalue of a symmetric matrix
(a nice optimization problem)

Theorem 3.1. Let M be a symmetric matriz of order n with the eigenvalues \y > --- > A, . Then
— T _ i
1. A\ = max||y||=1 2° Mz = max,xo W
2. If for some x we have x¥ Mx = \i||z||?, then Mx = \x

Proof. Let vq,...,v, be unit eigenvectors corresponding to the eigenvalues Ay > --- > \,, of M.

1. Let us write x as a linear combination of vy,...,v,,
T =Q1V1+ -+ apUy.

Let V = [v1,...,v,],a = [ay,...,a,]T, then z = Vo
Then .
z|? = TVTVa =aTa = Za?,
i=1
and
n
T Mz = Z N,
i=1

We see that

n

n
eI Mz = Z/\iaf <\ 20@2 = Aulfz]]?.

i=1 i=1
Since we know that
U{M’Ul = )\1”’01”2.



This implies

T
M
A\ = max 2/ Mz = max#.
[|z||=1 a#0 ||z|]

2. Consider 7 Mx = \{||z||>. Then,

n n
et Mz = Z)\ia? =)\ Zaf.
i=1 i=1
Suppose that A\; = -+ = A\ > Agy1 > --- > Ay Then it implies that ag11 = -+ = a,, =0, that is

T =1V + -+ QpUg.

Hence, Mx = A\ .

O
Theorem 3.2. Let M be a symmetric matriz of order n. The smallest eigenvalue \,, of M 1is equal to
T
' Mx
min 27 Mz = min -
B! [l
Proof. Let v1,...,v, be unit eigenvectors corresponding to the eigenvalues A\; > --- > A, of M. Consider
any vector x, and write it as a linear combination
T =1V + -+ QpUp.
Then
n n
T Mz = Z)\iaf > A Za? = Anlz||*
i=1 i=1
Since Mwv, = \,vn,
T
' Mz
A\, = min 27 Mz = aTRToRE
llall=1 |||
O

4 Cauchy’s Interlace Theorem

Theorem 4.1. Let M be a symmetric matriz of order n, and B be its principal submatrixz of order m, where,
m < n. Suppose the eigenvalues of A are \y > ... > X\, and the eigenvalues of B are f1 > ... > By,. Then

Me > Be > Metnem, fork=1,...,m.

Proof. For some suitable matrices X, Z we can write

B XT
M= [ 5 ] .
Let z1,...,x, be eigenvectors of A corresponding to the eigenvalues Ay > ... > A,,. And let y1,...,yn

be eigenvectors of B corresponding to the eigenvalues 81 > ... > f,,. Let us define the following two vector
spaces.

1. W = span(y1,...,yr). We have

2T Bx
= i 4
P wew 2Ty )
2. V = span(zy, ..., x,). We have
2T Mz
Ak = eV 2Tz (5)



Construct a new vector space

W:{m ew}, wew

Since rankV =n — k+ 1, and rank W = k, there exists w = rg] € VNW for some w € W. Then

T
@' Mo = [w" 0] [§ % } [16)
Using (4), (5) I T
)\k Z u}~]\4;’w = w Buw Zﬁk

wTw wlw

} = wT Bw.

The proof of the other inequality is similar. Now let us define the following two vector spaces.

1. W = span(yk, ..., Ym). Note that

3 zT Bz
L — Inax
zew alx

2. V =span(zx1,...,Tptn—m). Note that

\ C 2TMx
ktn—m = Min
tnom T oev 2Tx

w{m eR”}, wew

Construct a new vector space

Since rank V = k 4+ n —m, and rank W = m — k + 1, there exists @ = [

Then as before we have w? M@ = w? Bw. Using (6), (7)

T M wT Bw

)\k+n7m S = S Bk

wTw wTw
It completes the proof.

For further references see Daniel A. Spielman, Embree.
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w} e VNW for some w € W.


http://www.cs.yale.edu/homes/spielman/561/2012/lect03-12.pdf
https://www.cmor-faculty.rice.edu/~caam440/chapter2.pdf
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