Finding the cut-vertices and biconnected components in an undirected graph

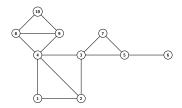
Ranveer IIT Indore

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Connected graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

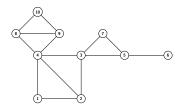
Let G = (V, E) be an undirected graph, with vertex-set V and edge set E. Graph G is called *connected* when there is a path between every pair of vertices.



Cut-vertices

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A *cut-vertex* in an undirected graph G is a vertex whose deletion creates more connected components than previously in the graph.



Vertices 3, 4, 5 are the cut-vertices.

Finding Cut-vertices

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Naive Approach: For every vertex $v \in G$: remove v from the corresponding component and check if the component remains connected (use Breadth-first search or Depth-First search). If the resulting subgraph is disconnected, add v to cut-vertex list.

Complexity: The time complexity of the above method is O(|V| * (|V| + |E|))

Can we do better ?

Key observation

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A vertex v in G is a cut-vertex if and only if there exist two other vertices x and y such that every path between x and y passes through v; in this case and only in this case the deletion of v from G destroy all paths between x and y.

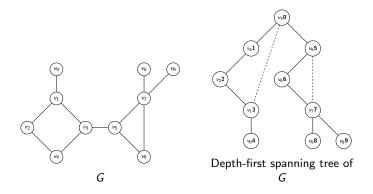
This observation allow us to use depth-first search to find the cut-vertices of G in O(|V| + |E|) operations.

Depth-First Search (DFS)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1 Explore deeper in the graph whenever possible
- 2 Edges are explored out of the most recently discovered vertex v that still has unexplored edges
- When all the incident edges of v have been explored, backtrack to the vertex from which v was discovered

Depth-first spanning tree



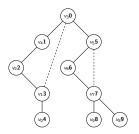
In a Depth-first spanning tree, *depth first number (dfn)* of a vertex v, denoted by dfn(v) is the discovery time of v (shown on the right side of the vertices in bold). Dashed edges are the back edges.

Vertex	V ₀	v_1	<i>V</i> ₂	V ₃	<i>V</i> ₄	V ₅	V ₆	<i>V</i> 7	<i>V</i> 8	V9
dfn	4	3	2	0	1	5	6	7	9	8

Cut-vertex

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

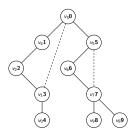
- The root of a DFS-tree is a cut-vertex if and only if it has at least two children.
- A nonroot vertex v of a DFS-tree is a cut-vertex of G if and only if v has a child s such that there is no back edge from s or any descendant of s to a proper ancestor of v.



Notation: Let T be a DFS-tree, $(v, u) \in T$ means v is the parent of u. B is the set of all the back edges.

low function

We define low(v) as the smallest value of dfn(x), where x is a vertex in DFS-Tree T that can be reached from v by following zero or more tree edges followed by at most one back edge.



	Vertex	V ₀	v_1	<i>V</i> ₂	<i>V</i> 3	<i>V</i> ₄	V ₅	V ₆	<i>V</i> ₇	<i>V</i> 8	V9
ſ	dfn	4	3	2	0	1	5	6	7	9	8
	low	4	0	0	0	0	5	5	5	9	8

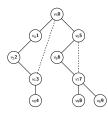
 $low(v) = min\Big(\{dfn(v)\} \cup \{low(x)|(v,x) \in T\} \cup \{dfn(x)|(v,x) \in B\}\Big).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem for the cut-vertices

Theorem

Let G = (V, E) be connected graph with a DFS-Tree T and with back edges B. Then $a \in V$ is a cut-vertex if and only if there exist vertices $v, w \in V$ such that v is a child of a in T, w is not a descendant of v in T and $low(v) \ge dfn(a)$.



Vertex	V ₀	<i>v</i> ₁	V2	V ₃	<i>V</i> ₄	<i>V</i> 5	V ₆	V 7	<i>V</i> 8	V9
dfn	4	3	2	0	1	5	6	7	9	8
low	4	0	0	0	0	5	5	5	9	8

Example: (v_3, v_4) , $low(v_4) = dfn(v_3)$ so v_3 is a cut-vertex. (v_6, v_7) , $low(v_7) < dfn(v_6)$ so v_6 is not a cut-vertex.

Algorithmic steps for cut-vertices

- During DFS, calculate the values of the *low* function for every vertex.
- 2 After we finish the recursive search from a child u of a vertex v, we update low(v). Vertex v is a cut-vertex, disconnecting u, if low(u) ≥ dfn(v).
- When encountering a back-edge (v, u) update low(v) with the value of dfn(u)
- If vertex v is the root of the DFS tree, check whether w is its second child

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Blocks (or biconnected components or 2-connected components)

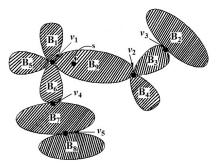
A *block* in a graph G is a maximally connected subgraph that has no cut-vertex.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

How to find them ?

Finding biconnected components

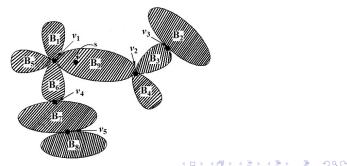
Recognizing cut-vertices, using DFS, we can determine the biconnected components by storing the edges on a stack as they are traversed. HOW?



 v_1, \ldots, v_5 are the cut-vertices. B_1, \ldots, B_9 are the block.

Central Idea

Let us start DFS at vertex *s* in B_9 . Next, suppose we wish to go into B_4 by passing through v_2 . By DFS nature all the edges in B_4 must be traversed before we back up to v_2 . Now if we leave B_4 and go into B_3 and then into B_2 through v_3 . If we store the edges in a stack, by the time we pass through v_3 back into B_3 , all the edges of B_2 will be on top of the stack, and forms a biconnected component. When they are removed, the edges on the top of the stack will be from B_3 , and we will once again be traversing B_3 .



Algorithmic steps for biconnected components

- During DFS, use a stack to store visited edges (tree edges or back edges)
- After we finish the recursive search from a child u of a vertex v, we check if v is a cut-vertex for u. If it is, we output all edges from the stack until (v, u). These edges form a biconnected component
- When we return to the root of the DFS-tree, we have to output the edges even if the root is not a cut-vertex (graph may be biconnected).

Complexity: Since the algorithm is a depth-first search with a constant amount of extra work done as each edge is traversed, the time required is O(|V| + |E|).

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Hopcroft, J. and Tarjan, R., 1973. Algorithm 447: efficient algorithms for graph manipulation. Communications of the ACM, 16(6), pp.372-378.
- 2 Reingold, E.M., Nievergelt, J. and Deo, N., 1977. Combinatorial algorithms: theory and practice. Prentice Hall College Div.