
Finding the cut-vertices and biconnected
components in an undirected graph

Ranveer
IIT Indore

Connected graph

Let G = (V ,E) be an undirected graph, with vertex-set V and
edge set E . Graph G is called connected when there is a path
between every pair of vertices.

1 2

34 5 6

78 9

10

Cut-vertices

A cut-vertex in an undirected graph G is a vertex whose deletion
creates more connected components than previously in the graph.

1 2

34 5 6

78 9

10

Vertices 3, 4, 5 are the cut-vertices.

Finding Cut-vertices

Naive Approach: For every vertex v ∈ G : remove v from the
corresponding component and check if the component remains
connected (use Breadth-first search or Depth-First search). If the
resulting subgraph is disconnected, add v to cut-vertex list.

Complexity: The time complexity of the above method is
O
(
|V | ∗ (|V |+ |E |)

)
Can we do better ?

Key observation

A vertex v in G is a cut-vertex if and only if there exist two other
vertices x and y such that every path between x and y passes
through v ; in this case and only in this case the deletion of v from
G destroy all paths between x and y .

This observation allow us to use depth-first search to find the
cut-vertices of G in O(|V |+ |E |) operations.

Depth-First Search (DFS)

1 Explore deeper in the graph whenever possible

2 Edges are explored out of the most recently discovered vertex
v that still has unexplored edges

3 When all the incident edges of v have been explored,
backtrack to the vertex from which v was discovered

Depth-first spanning tree

v1

v0

v2 v3

v4

v5

v6

v7

v8 v9

G

v30

v41

v22

v13

v04

v55

v66

v77

v98 v89

Depth-first spanning tree of
G

In a Depth-first spanning tree, depth first number (dfn) of a vertex
v , denoted by dfn(v) is the discovery time of v (shown on the right
side of the vertices in bold). Dashed edges are the back edges.

Vertex v0 v1 v2 v3 v4 v5 v6 v7 v8 v9
dfn 4 3 2 0 1 5 6 7 9 8

Cut-vertex

1 The root of a DFS-tree is a cut-vertex if and only if it has at
least two children.

2 A nonroot vertex v of a DFS-tree is a cut-vertex of G if and
only if v has a child s such that there is no back edge from s
or any descendant of s to a proper ancestor of v .

v30

v41

v22

v13

v04

v55

v66

v77

v98 v89

Notation: Let T be a DFS-tree, (v , u) ∈ T means v is the parent
of u. B is the set of all the back edges.

low function

We define low(v) as the smallest value of dfn(x), where x is a
vertex in DFS-Tree T that can be reached from v by following
zero or more tree edges followed by at most one back edge.

v30

v41

v22

v13

v04

v55

v66

v77

v98 v89

Vertex v0 v1 v2 v3 v4 v5 v6 v7 v8 v9
dfn 4 3 2 0 1 5 6 7 9 8

low 4 0 0 0 0 5 5 5 9 8

low(v) = min
(
{dfn(v)}∪{low(x)|(v , x) ∈ T}∪{dfn(x)|(v , x) ∈ B}

)
.

Theorem for the cut-vertices

Theorem
Let G = (V ,E) be connected graph with a DFS-Tree T and with
back edges B. Then a ∈ V is a cut-vertex if and only if there exist
vertices v ,w ∈ V such that v is a child of a in T , w is not a
descendant of v in T and low(v) ≥ dfn(a).

v30

v41

v22

v13

v04

v55

v66

v77

v98 v89

Vertex v0 v1 v2 v3 v4 v5 v6 v7 v8 v9
dfn 4 3 2 0 1 5 6 7 9 8

low 4 0 0 0 0 5 5 5 9 8

Example: (v3, v4), low(v4) = dfn(v3) so v3 is a cut-vertex.
(v6, v7), low(v7) < dfn(v6) so v6 is not a cut-vertex.

Algorithmic steps for cut-vertices

1 During DFS, calculate the values of the low function for every
vertex.

2 After we finish the recursive search from a child u of a vertex
v , we update low(v). Vertex v is a cut-vertex, disconnecting
u, if low(u) ≥ dfn(v).

3 When encountering a back-edge (v , u) update low(v) with
the value of dfn(u)

4 If vertex v is the root of the DFS tree, check whether w is its
second child

Blocks (or biconnected components or
2-connected components)

A block in a graph G is a maximally connected subgraph that has
no cut-vertex.

How to find them ?

Finding biconnected components

Recognizing cut-vertices, using DFS, we can determine the
biconnected components by storing the edges on a stack as they
are traversed. HOW?

v1, . . . , v5 are the cut-vertices. B1, . . . ,B9 are the block.

Central Idea
Let us start DFS at vertex s in B9. Next, suppose we wish to go
into B4 by passing through v2. By DFS nature all the edges in B4

must be traversed before we back up to v2. Now if we leave B4

and go into B3 and then into B2 through v3. If we store the edges
in a stack, by the time we pass through v3 back into B3, all the
edges of B2 will be on top of the stack, and forms a biconnected
component. When they are removed, the edges on the top of the
stack will be from B3, and we will once again be traversing B3.

Algorithmic steps for biconnected
components

1 During DFS, use a stack to store visited edges (tree edges or
back edges)

2 After we finish the recursive search from a child u of a vertex
v , we check if v is a cut-vertex for u. If it is, we output all
edges from the stack until (v , u). These edges form a
biconnected component

3 When we return to the root of the DFS-tree, we have to
output the edges even if the root is not a cut-vertex (graph
may be biconnected).

Complexity: Since the algorithm is a depth-first search with a
constant amount of extra work done as each edge is traversed, the
time required is O(|V |+ |E |).

References

1 Hopcroft, J. and Tarjan, R., 1973. Algorithm 447: efficient
algorithms for graph manipulation. Communications of the
ACM, 16(6), pp.372-378.

2 Reingold, E.M., Nievergelt, J. and Deo, N., 1977.
Combinatorial algorithms: theory and practice. Prentice Hall
College Div.

