The Graphs with Exactly One Positive
Eigenvalue

Ranveer

A connected graph G has exactly one positive eigenvalue if and only if it is a
complete multipartite graph.

Proof. (=) Suppose G is a connected graph with exactly one positive eigenvalue. We
will show that G is a complete multipartite.

First, we claim that G does not contain either P, (path on 4 vertices) or the graph
H shown in Figure 1 as an induced subgraph. Both P, and H have exactly two positive
eigenvalues (why? check yourself). By the Cauchy interlace theorem, if G contained
either of these graphs as an induced subgraph, then G would have at least two positive
eigenvalues, contradicting our assumption.
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Figure 1: P, and H graph

Since G is Py-free, the diameter of GG is at most 2. We consider two cases:

Case 1: If the diameter of G is 1, then G is a complete graph, which is a special case
of a complete multipartite graph, and we are done.

Case 2: If the diameter of G is 2, we show that any pair of non-adjacent vertices
has the same neighborhood. Let u and v be two non-adjacent vertices in G. Since the
diameter is 2, there exists a vertex p such that p is adjacent to both u and v.

For contradiction, suppose there exists a vertex ¢ that is adjacent to v but not to w.
Then the induced subgraph on vertices {u, p,v,t} would be either P, or H, depending on
whether p and ¢ are adjacent. This contradicts our earlier claim. Therefore, any two non-
adjacent vertices in G' must have identical neighborhoods, which implies G is a complete
multipartite.

(<=) Now we prove that if G is a complete multipartite graph, then G has exactly one
positive eigenvalue.

Let G be a complete multipartite graph with partitions Si, Sy, . . ., .S, containing a total
of n vertices, where we assume without loss of generality that [S1| < [Sh] < --- < [S,].
We proceed by induction on the number of vertices n.

Base Case: When n = p, we have |S;| = 1 for all 4, meaning G is a complete graph
K,. It is well known that the adjacency matrix of K, has exactly one positive eigenvalue,



p—1, with multiplicity 1, and the remaining eigenvalues are all —1. Thus, the claim holds
for the base case.

Inductive Hypothesis: Assume that every complete multipartite graph with n ver-
tices and p partitions has exactly one positive eigenvalue.

Inductive Step: Consider a complete multipartite graph G with n + 1 vertices and
p partitions. Since n + 1 > p, we have |S,| > 2. Let the eigenvalues of the adjacency
matrix of G be:

M= Ae > > A

Remove a vertex from the partition S, to obtain a new graph G’ with n vertices and
the same p partitions. By the induction hypothesis, G’ has exactly one positive eigenvalue.
Let the eigenvalues of G’ be:

N >Ny > >\

Since both G and G’ are complete multipartite graphs with p partitions, the adjacency
matrices of both the graphs have rank p. That is,

rank(Ag) = rank(Ag ) =p

We know that rank of a symmetric matrix equals to the number of its nonzero eigen-
values. Since G’ has exactly one positive eigenvalue and the rank is p, we have \] > 0,
)\/2 —_ = A;/L+17p - 0’ aIld A;”L+2*p7."7)\;1 < 0.

By Cauchy interlace theorem, we have:

M>XN>X >N > >N > A

This implies that A\, 43-p,..., A1 < 0 and A; > 0. Since the rank of G is also p, we

must have Ay = -+ = A\, 4o, = 0. Therefore, G has exactly one positive eigenvalue.
This proves that a connected graph G has exactly one positive eigenvalue if and only
if G is a complete multipartite. O

Let G be any graph. Then G has exactly one positive eigenvalue if and only if G is
a complete multipartite graph with some isolated vertices.

Proof. Suppose G is a disconnected graph with k£ connected components C1, ..., Cy, and
assume that each component has at least one edge. Then G must have k positive eigenval-
ues. Therefore, if G has exactly one positive eigenvalue, then exactly one component, say
(1, contains edges, and the remaining & — 1 components must be empty graphs (graphs
without edges). By taking C; as an induced subgraph, it follows from Theorem 1 that C
is a complete multipartite graph. O]



