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Principal Component Analysis (PCA) is an extensively used technique in machine learning for reducing
the dimensionality and noise of data. It was invented in 1901 by Karl Pearson. In this note, we discuss the
basic mathematics behind PCA. We just used basic linear algebra.

1 What are the principal components?

Consider a cricket match between India and New Zealand. Suppose the Indian team is fielding and the New
Zealand captain Kane Williamson is at the batting crease, see Figure 1. Which fielder will see Kane’s batting
stumps best? Consider the views from wicketkeeper Rishab Pant and the point fielder Ravindra Jadeja.
Which view is better? Definitely the view from Rishab.

Figure 1

The motive of PCA is similar. For a given set of data points in a d-dimensional space it find the directions
along which the data can be seen more clearly. Consider Figure 2.
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Figure 2

In (a) data points are shown in 3-dimensional space. In (b) the same data points can be seen as points
in 2-dimensional space (shaded region). Two new orthogonal axes, new − axis1,new − axis2 can measure
these points. The red points are the orthogonal projections of the data points on these axes. The new − axis1
captures the maximum spread of projected data, while new − axis2 captures the least.

1.1 Basic idea of PCA

Suppose some data points are lying on d-dimensional space. Let axis1, . . . ,axisd be the orthogonal axes to
represent these data point. In order to capture the spread of data, PCA aims at finding new orthogonal
axes new − axis1, . . . ,new − axisd called principal components or principal direction. More precisely, the
new − axis1 captures the maximum spread, new − axis2 gives the next best maximum spread, and so on.
The new − axisd captures the least spread, in other words, it captures most of the noise of data. In practice,
we need to keep the components that give more spread and discard the ones that give less spread. Thus it
is a good technique for reducing the dimensionality and noise in the data.

1.2 Measuring Spread (The Variance)

Consider n 1-dimensional data points x1, x2, . . . , xn. The average of these points is

x̄ =
x1 + . . .+ xn

n
.

Their spread is measured by the quantity

var(x) =
(x1 − x̄)2 + . . .+ (xn − x)2

n
,

known as the variance. It measures how the data points are spread with respect to their average.

Let 1 denote the all-one vector

1
...
1

, and x =
[
x1 x2 . . . xn

]
. Then the average x can be written as

x̄ =
x1

n
. (1)
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1.3 Projecting a data point onto a line

Consider two d-dimensional vectors

u =

u1...
ud

 , v =

v1...
vd

 .
Pictorially the projection of v on u is as follows

Note that vectors u and v − αu are orthogonal. So

uT (v − αu) = 0,

uT v − αuTu = 0,

α =
uT v

uTu
.

Thus the projection of v on u is the vector

uT v

uTu
u = uT v

( u

uTu

)
.

The unit vector u
uTu

gives the direction. (For all the vector on u the projection of v on these vectors will
always be the same.)

2 The first principal component

Given n d-dimensional data points x1, x2 . . . , xn, the data matrix X is follows.

X =

 | | . . . |
x1 x2 . . . xn
| | . . . |

 , (2)

that is the i-th column of X is the data point xi. In machine learning the coordinates of each data xi are
termed as its features. So we can also see X as the matrix where the i-th row is the feature vector fi,
consisting of i-th features of x1, x2, . . . , xn, that is,

X =


−f1−
−f2−

...
−fd−

 . (3)
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2.1 The aim

Find the unit vector u such that when the data points x1, . . . , xn are projected in the direction of u the
variance is maximum. The projected data points are given by the vector

uT

 | | . . . |
x1 x2 . . . xn
| | . . . |

 = uTX.

So the aim is to find u to get
max(var(uTX)).

The vector u is known as the first principal component.

2.2 Finding the first principal component

We can write

var(uTX) =
1

n
(uTX − uTX1T )(uTX − uTX1T )T

=
1

n

(
uTX − uTX1

n
1T

)(
uTX − uTX1

n
1T

)T

=
1

n

(
uTX − uTX1

n
1T

)(
XTu− 1

1TXTu

n

)

=
1

n
uT

(
X − X1

n
1T

)(
XT − 1

1TXT

n

)
u

=
1

n
uT

(
X − X1

n
1T

)(
X − X1

n
1T

)T

u

= uT
X̃X̃T

n
u,

where

X̃ =


−f1−
−f2−

...
−fd−

−

−f1−
−f2−

...

−fd−

 . (4)

The matrix X̃X̃T

n is the covariance matrix of the data matrix X, let us denote it by S. We can write

var(uTX) = uTSu.

Thus our aim is to find u to get
max(uTSu).

(Note that the order of S is d× d).

2.2.1 Finding u

Let λ1 ≥ λ2 ≥ · · · ≥ λd be the eigenvalues of S, and the corresponding unit eigenvectors be v1, . . . , vd. Since
S is a symmetric matrix v1, . . . , vn are orthonormal to each other 1. Write u as a linear combination of
v1, . . . , vd. That is

u = α1v1 + α2v2 + · · ·+ αdvd. (5)

1See Spectral Theorem
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We have
uTu = α2

1 + · · ·+ α2
d = 1.

Now,

uTSu = uT (α1λ1v1 + · · ·+ αdλdvd)

= λ1α
2
1 + · · ·+ λdα

2
d

≤ λ1(α2
1 + · · ·+ α2

d)

= λ1.

So we get
uTSu ≤ λ1.

But since Sv1 = λ1v1, this implies
vT1 Sv1 = λ1.

Hence
max(uTSu) = λ1,

and this happens when u = v1. Thus the principal component u is the unit eigenvector corresponding to the
largest eigenvalue λ1 of the covariance matrix S. The corresponding variance is λ1.

3 Other principal components and conclusions

We have seen that the unit eigenvector corresponding to the largest eigenvalue of the covariance matrix S
gives the first principal component of X. What about the other principal components? We prove that the
i-th principal component is vi with the corresponding variance equals to λi.

We prove this using induction on i. When i = 1 we have seen v1 is the first principal component.
Assume that the result is true for an i ≥ 1, that is v1, v2, . . . , vi are the first i principal components and the
corresponding variances are λ1, λ2, . . . , λi, respectively. Let u be the (i + 1)-th principal component. As in
5 write u as a linear combination of v1, v2, . . . , vd. Note that u has to be orthogonal to all of v1, v2, . . . , vi.
Hence, by 5

α1 = α2 = · · · = αi = 0.

So

uTSu = uT (αi+1λi+1vi+1 + · · ·+ αdλdvd)

= λi+1α
2
i+1 + · · ·+ λdα

2
d

≤ λi+1(α2
i+1 + · · ·+ α2

d)

= λi+1.

So we get
uTSu ≤ λi+1.

But since Svi+1 = λi+1vi+1, this implies
vTi+1Svi+1 = λi+1.

Hence
max(uTSu) = λi+1,

and this happens when u = vi+1. Thus the (i+1)-th principal component is the unit eigenvector corresponding
to the (i+ 1)-th largest eigenvalue of the covariance matrix S. The corresponding variance is λi+1.

Since the important principal components are the ones that give good variance, we ignore the principal
components that give less variance as they mainly capture the noise. Typically the number of principal
components we consider for our purpose is significantly less than the original data dimension d. Hence PCA
is a good technique for reducing the dimensionality and noise in the data.
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