
Bad, Good, Better, Best Matrices

Ranveer∗

“...beautiful mathematics eventually tends to be useful, and useful mathematics eventually tends to be

beautiful”- Anonymous

Disclaimer: none of the matrix, in fact, none of mathematical entity, idea can be bad. It is my very, very

limited knowledge and experience about the matrices which characterize that some matrices are easy to work

with while others are not so.

1 A one-line motivation

Given a square matrix M , how fast can you calculate its k-th power, that is, the matrix Mk for some positive

integer k?

Of course, one can naively multiply M iteratively k times to get Ak. Or, we can reduce the multiplications by

first calculating A2, then multiplying two A2 to get A4, two A4 to get A8, and so on. Can we do it more

efficiently? For some matrices can we do it more efficiently than others? We will try to find the answer, and

in the process, we will know yet another beautiful use of eigenvalues and eigenvectors.

Calculating matrix powers is a need of various analyses. For example, given a network of cities, in how

many ways you can commute between any two cities x, y in k-step? The answer is the (x, y)-th entry of the

matrix Ak, where A is the adjacency matrix of the given network. Although computing matrix powers in not

the sole reason for this write-up. There are innumerable applications where different type of matrices are

involved so one should know about the nature of matrices. However, mathematics doesn’t really care about

the applications, it has its eternal sublime beauty, and the applications inevitably follow it.

2 Let us start

We will start with a seemingly dull and unrelated question which will turn out to be an exciting one later on.

Given a square matrix M of order n, how many eigenvalues are there? How many eigenvectors are there? For

those who are wondering what these two entities, eigenvalues and eigenvectors are, let us have a very brief

discussion. What happens when we multiply M with a nonzero column vector v of order n? It gives some

column vector Mv. Sometimes v happens to be so special that Mv is some scalar multiple of v itself. That is,

Mv = λv, for some scalar λ. This special vector v is then called as an eigenvector, and the associated scalar

λ is an eigenvalue. But how to find a pair of v, λ for a square matrix M? In the equation Mv = λv only M is
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known rest two are unknowns. Fortunately, our school mate determinant comes to help us. We can write

(M − λI)v = 0, this 0 is zero-vector, that is, all its entries are zero. This implies that the determinant of

the matrix M − λI must be zero. (If you are again wondering why it is so check this neat fact here again.)

The determinant of M − λI gives a polynomial pM (λ), which we call the characteristic polynomial of M .

Since pM (λ) has degree n, there are n roots, and these are precisely the eigenvalues of M . What about the

eigenvectors? Check that if Mv = λv, then for any nonzero scalar c we have M(cv) = λ(cv). This means that

there can be many, many (infinite) eigenvectors associated with the same eigenvalue λ.

Ok, so M has n eigenvalues λ1, λ2, . . . , λn and suppose these are arranged in a decreasing order, that is,

λ1 ≥ λ2 ≥ · · · ≥ λn. Let us pick an eigenvector vi for the eigenvalue λi, i = 1, . . . , n. So we have a set V of

eigenvectors v1, v2, . . . , vn. Its time to look at some matrices; these will serve as a good warm up for our study.

1. A =

[
0 1

1 0

]
. Here, pA(λ) = λ2 − 1. So A has the eigenvalues λ1 = 1, λ2 = −1. To find an eigenvector

v1 for λ1, we should have (A− λ1I)v1 =

[
−1 1

1 −1

]
v1 = 0. We see that v1 =

[
1

1

]
satisfies it, so it is an

eigenvector for λ1. Similarly we can calculate that v2 =

[
1

−1

]
is an eigenvector for λ2. Check v1 and v2

are not scaled versions of each other, that is, v1 6= cv2 for any nonzero scalar c. We call that v1, v2 are

independent of each other.

2. B =

[
1 1

0 1

]
. Here, pB(λ) = (1− λ)2. So B has the eigenvalues λ1 = λ2 = 1, that is, the eigenvalues

are repeated. Unlike A both the eigenvalues are the same for B. To find an eigenvector v1 for λ1, we

should have (B − λ1I)v1 =

[
0 1

0 0

]
v1 = 0. We see that v1 = c

[
1

0

]
for any nonzero scalar c satisfies it,

so it is an eigenvector for λ1. But now let us try to find an eigenvector v2 for λ2. Again we have to

satisfy (B − λ1I)v2 =

[
0 1

0 0

]
v2 = 0. Which again gives v1 = d

[
1

0

]
for any nonzero scalar d. Thus v1

and v2 are the same vectors up to some nonzero scaling factor. That is, they are dependent vectors.

3. C =

[
1 0

0 1

]
, the identity matrix. Here, again like B we have pC(λ) = (1 − λ)2. So C has two

eigenvalues λ1 = λ2 = 1, the repeated eigenvalues. To find an eigenvector v1 for λ1, we should have

(C − λ1I)v1 =

[
0 0

0 0

]
v1 = 0. Waaw!! we see that every nonzero vector v1 satisfies it, that is, any

nonzero vector is an eigenvector. So we can choose v1 =

[
1

0

]
. Similarly for λ2 we can choose an

eigenvector v2 =

[
0

1

]
. This selection is special as we see v1 and v2 are independent.

A crucial point that is to be noted is that in B and C both have repeated eigenvalues, but for C we are able

to get two independent eigenvectors, while in B, we are not able to get them.
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3 The curious case of repeating eigenvalues

So till now we know that for a square matrix M of order n there are n eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and

we can associate some n eigenvectors v1, v2, . . . , vn to these eigenvalues such that vi is an eigenvector for λi,

i = 1, . . . , n. We can write

MV = V D, (1)

where V is the matrix with i-th column as vi and D is a diagonal matrix with i-th diagonal entry equals λi

(its off-diagonal entries are zero). For example, for the matrix A above, we can write[
0 1

1 0

][
1 1

1 −1

]
=

[
1 1

1 −1

][
1 0

0 −1

]
.

The next question is whether, in the equation MV = V D we can extract M . Yes we can if V is an invertible

matrix. In that case, we can multiply both sides of MV = V D by V −1 to get M = V DV −1. For example,

for the matrix A, we can write

[
0 1

1 0

]
=

[
1 1

1 −1

][
1 0

0 −1

][
1 1

1 −1

]−1
.

But what is so significant about it? Let us try to answer our motivational question. Let us try to find Mk.

First see what is A2, it is V DV −1V DV −1 = V DIDV −1 = V D2V −1. Next, let us figure out what A3 is. It is

A2A = V D2V −1V DV −1 = V D2IDV −1 = V D3V −1. Now the following elegant form for Ak is apparent.

Ak = V DkV −1. (2)

Calculating Dk is straightforward, its i-th entry will be λki . Thus once we know the eigenvalues, eigenvectors,

and inverse of matrix V for A, we are done. But hold on! this is only possible when V is invertible!! Is V

always invertible? No!. For matrix B above the corresponding matrix V is[
c d

0 0

]
,

which is not invertible.

So when is a square matrix invertible? Its when all its columns or rows are linearly independent. Thus when

the eigenvectors v1, . . . , vn associated with the eigenvalues λ1, . . . , λn of M are linearly independent then the

matrix V is invertible otherwise, not. So our query boils down to the cases when the eigenvectors v1, . . . , vn

will be independent.

3.0.1 When eigenvalues are distinct

Suppose λ1, . . . , λn all are distinct. Let us see what can be said about the invertibility of V . Without loss of

generality assume that {v1, . . . , vk} is a maximal set of independent eigenvectors from the set {v1, . . . , vn}.
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Note that 1 ≤ k ≤ n. That means we can write vk+1 as some linear combinations

vk+1 = α1v1 + · · ·+ αkvk,

for some scalars α1, . . . , αk not all zero. On multiplying with M on both sides it implies that

λk+1vk+1 = α1λ1v1 + · · ·+ αkλkvk. (3)

Also

λk+1vk+1 = α1λk+1v1 + · · ·+ αkλk+1vk. (4)

Subtracting eqn (3) from eqn (4) gives

0 = α1(λk+1 − λ1)v1 + · · ·+ αk(λk+1 − λk)vk.

Since v1, . . . , vk are independent, αi(λk+1 − λi) = 0, i = 1, . . . , k. But as λk+1 6= λi, it implies that αi = 0,

i = 1, . . . , k. This gives a contradiction that we can write vk+1 as a linear combination of v1, . . . , vk. It gives

the following theorem.

Theorem 3.1. Eigenvectors associated with distinct eigenvalues are independent.

3.0.2 When eigenvalues are repeated

We have seen for B,C both have repeated eigenvalues, but B does not have independent eigenvectors associated

with the eigenvalue while C has. In more precise terms, B has just one independent eigenvector for the

eigenvalue 1, but C has two independent eigenvectors for the eigenvalue 1. In both the matrices the eigenvalue

1 is repeated two times.

The number of times an eigenvalue λ is repeated is called its algebraic multiplicity. The number of independent

eigenvectors associated with an eigenvalue is called is geometric multiplicity. So, for matrix B the eigenvalue

1 has algebraic multiplicity 2 while the geometric multiplicity 1. Where as for matrix C the eigenvalue 1 has

algebraic multiplicity 2 and the geometric multiplicity is also 2. Following is a fascinating fact about these

two interesting numbers.

Theorem 3.2. For any eigenvalue the geometric multiplicity can not exceed the algebraic multiplicity.

The proof of this fascinating fact is given in Appendix 9. Theorem 3.2 has very important implications.

First suppose for a matrix M there is an eigenvalue λ whose geometric multiplicity is less than the algebraic

multiplicity, then it is clear that there can not be a set v1, . . . vn of independent eigenvectors, and V must be

non-invertible. Next consider the case when, for all the eigenvalues of M the geometric multiplicities are equal

to algebraic multiplicity. Let µ1, . . . , µk are the distinct eigenvalues with multiplicities n1, . . . , nk, respectively.

Let Si = {ui1, . . . , uini
} be the set of ni independent eigenvectors for the eigenvalue µi, i = 1, . . . , k. Owing to
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Theorem 3.1 for any j 6= i, any eigenvector for µj must be independent of Si. Since
∑
ni = n, the union of

vectors S1 ∪ · · · ∪ Sk gives n independent eigenvectors. It gives the following theorem.

Theorem 3.3. The matrix V is invertible if and only if for all the eigenvalues the algebraic multiplicity

equals the geometric multiplicity.

Theorem 3.3 will serve as a criterion to classify the matrices into bad, good, better, best classes.

4 Bad matrices

We place the matrices which do not have a full set of independent eigenvectors into the bad class. That is, we

place a matrix M in the bad class if there is no invertible matrix V such that M = V DV −1 or equivalently,

V −1MV = D. In a decent formal language, we call M to be an nondiagonalisable or defective matrix as the

diagonal form V −1MV = D is not possible. Matrix B is an example of such a matrix. Consider one more

matrix

M =


−1 6 4

−5 10 6

6 −9 −5

 .
The eigenvalues of M are λ1 = 2, λ2 = 1, λ3 = 1. So the eigenvalue 2 has algebraic multiplicity 1 and the

eigenvalue 1 has algebraic multiplicity 2. Now let us find the algebraic multiplicities. The eigenvectors of M

are

v1 =


0.53

−0.27

0.80

 , v2 =


0

−0.55

0.83

 , v3 =


0

−0.55

0.83


We see that the geometric multiplicity of the eigenvalue 2 is 1, which is equal to its algebraic multiplicity.

However as v2 and v3 are not independent, the geometric multiplicity of the eigenvalue 1 is which is less than

its algebraic multiplicity. This is a bad case since, in this case, the matrix V consisting of eigenvectors v1, v2,

and v3 is not invertible.

5 Good matrices

Next, it is obvious now we are going to place the matrices, which have a full set of independent eigenvectors

into the good class. That is, we place a matrix M in the bad class if there is an invertible matrix V such that

M = V DV −1. Formally we call them diagonalizable matrix. Matrix A and C are example of such a matrix.

Consider one more matrix

M =


3 1 1

−1 1 −1

−1 −1 1

 .
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The eigenvalues of M are λ1 = 2, λ2 = 2, λ3 = 1. So the eigenvalue 2 has algebraic multiplicity two and the

eigenvalue 1 has algebraic multiplicity 1. Now let us find the algebraic multiplicities. The eigenvectors of M

are

v1 =


1

−1

0

 , v2 =


1

0

−1

 , v3 =


−1

1

1


As v1, v2 are two independent vectors; we see that the geometric multiplicity of the eigenvalue 2 is two, which

is equal to its algebraic multiplicity. The geometric multiplicity of the eigenvalue 1 is one which is also equal

to its algebraic multiplicity. This is a good case since we can write

M =


3 1 1

−1 1 −1

−1 −1 1

 =


1 1 −1

−1 0 1

0 −1 1




2 0 0

0 2 0

0 0 1




1 1 −1

−1 0 1

0 −1 1


−1

.

And for any integer K

Mk =


1 1 −1

−1 0 1

0 −1 1




2k 0 0

0 2k 0

0 0 1k




1 1 −1

−1 0 1

0 −1 1


−1

.

6 Better matrices

What do we expect next? Recall that M is good when there is an invertible matrix V , which leads to

Mk = V DkV −1 as intermediate products gets vanish due the fact that V −1V = I. Let us ask for more;

what if V TV = I? In this case we not even need to calculate the inverse of V , the inverse of V is simply its

transpose V T . But is this possible? Are there such matrices for which V happens to be like this? The answer

is yes. In fact, we all have seen these matrices quite often as we frequently encounter them in our life. These

are symmetric matrices!!. These matrices display very beautiful properties.

Let M be a symmetric matrix of order n. First of all, its all the eigenvalues λ1, . . . , λn are real (take this

as an exercise, an easy one). The next thing about M , which is of utmost importance to us is that all its

eigenvectors v1, . . . , vn are independent. It is due to Theorem 3.3 and the following theorem.

Theorem 6.1. For a symmetric matrix, any eigenvalue has the same geometric multiplicity and the

algebraic multiplicity.

The proof is given in Appendix 9, Theorem 9.2. In fact we can say even more; we can always choose v1, . . . , vn

such that vTi vj = 0 for i 6= j and vTi vj = 1 for i = j. That is, v1, . . . , vn can be choosen to be orthonormal

vectors. Moreover this is possible if and only if M is a symmetric. The following is a beautiful theorem about

the symmetric matrices, also known as spectral theorem.
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Theorem 6.2. Any square matrix M of order n is a symmetric matrix if and only if

M = V DV T , equivalently, V TMV = D,

where V is a orthogonal matrix, (that is, V TV = V V T = I) with columns v1, v2, . . . , vn which are the

eigenvectors of M corresponding to the eigenvalues λ1, . . . , λn, and D = diag(λ1, . . . , λn).

The proof of spectral theorem is given in Appendix 9, Theorem 9.3.

Both A and C are examples of such matrices. Consider one more example

M =


2 1 −1

1 2 1

−1 1 −4

 .
The eigenvalues of M are λ1 = 3, λ2 = 1.37, λ3 = −4.37. The eigenvectors of M are

v1 =


0.18

−0.18

0.97

 , v2 =


−0.68

0.68

−0.25

 , v3 =


0.71

0.71

0


Check that it is a better case since we can write

M =


2 1 −1

1 2 1

−1 1 −4

 =


0.18 −0.68 0.71

−0.18 0.68 0.71

0.97 −0.25 0




3 0 0

0 1.37 0

0 0 −4.37




0.18 −0.68 0.71

−0.18 0.68 0.71

0.97 −0.25 0


T

.

And for any integer K

Mk =


0.18 −0.68 0.71

−0.18 0.68 0.71

0.97 −0.25 0




3k 0 0

0 1.37k 0

0 0 −4.37k




0.18 −0.68 0.71

−0.18 0.68 0.71

0.97 −0.25 0


T

.

7 Best matrices

Consider the following good matrix (as it is a symmetric matrix)

M =


3 0 −1 −3

0 7 1 −1

−1 1 2 2

−3 −1 2 6

 .

Its eigenvalues are λ1 = 8.76, λ2 = 7.13, λ3 = 1.35, λ4 = 0.76. Check that all the eigenvalues of M are

nonnegative. A symmetric matrix whose all the eigenvalues are nonnegative is known as a positive semi-
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definite matrix, and when the eigenvalues are positive it is known as a positive definite matrix. Check that

M is positive definite. These matrices have very high importance for different applications and display even

more beautiful properties.

Let M be a symmetric positive semidefinite matrix of order n. Using Theorem 9.3 we can write M = V DV T ,

where V is the matrix with columns v1, v2, . . . , vn which are the eigenvectors of M corresponding to the

eigenvalues λ1, . . . , λn, and V is an orthogonal matrix. Since the eigenvalues are nonnegative we can write

D = D
1
2D

1
2 , where D

1
2 is a diagonal matrix with i-th diagonal entry equals to

√
λi. Let V̂ = V D

1
2 , then we

can write M = V D
1
2D

1
2V T = V̂ V̂ T . It implies that for any nonzero vector x, we have xTMx = xT V̂ V̂ Tx =

(V̂ Tx)T (V̂ Tx) ≥ 0. This is a very useful information as it gives a beautiful quadratic form. Positive (semi)

definite matrices are extremely important in optimization and machine learning problems.

Matrix C is an example of such a matrix. Another example is

M =


2 −1 0

−1 2 −1

0 −1 3

 ,
its eigenvalues are λ1 = 3.80, λ2 = 2.45, λ3 = 0.75.

8 Finding Fibonacci or Hemachandra numbers

We all know that Fibonacci or Hemachandra numbers are a sequence of numbers, H1 = 1, H2 = 2, and

Hi = Hi−1 +Hi−2, for i ≥ 3. In a matrix form, we can write[
Hn+1

Hn

]
=

[
1 1

1 0

][
Hn

Hn−1

]
.

Expanding it we can write

[
Hn+1

Hn

]
=

[
1 1

1 0

][
Hn

Hn−1

]
=

[
1 1

1 0

]2 [
Hn−1

Hn−2

]
=

[
1 1

1 0

]3 [
Hn−2

Hn−3

]
= · · · =

[
1 1

1 0

]n−1 [
1

1

]
.

Let

M =

[
1 1

1 0

]
.

Its eigenvalues are λ1 = φ, λ2 = 1− φ, where φ = 1+
√
5

2 , the golden ratio. The eigenvectors are

v1 =

[
φ

1

]
, v2 =

[
1− φ

1

]
.
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As v1 and v2 are independent, we can write

Mk =

[
1 1

1 0

]k

=

[
φ 1− φ
1 1

][
φk 0

0 (1− φ)k

][
φ 1− φ
1 1

]−1

=

[
φ 1− φ
1 1

][
φk 0

0 (1− φ)k

]
1√
5

[
1 φ− 1

−1 φ

]
.

Thus, [
Hn+1

Hn

]
=

1√
5

[
φ 1− φ
1 1

][
φn−1 0

0 (1− φ)n−1

][
1 φ− 1

−1 φ

][
1

1

]

=
1√
5

[
φ 1− φ
1 1

][
φn−1 0

0 (1− φ)n−1

][
φ

φ− 1

]

=
1√
5

[
φn+1 − (1− φ)n+1

φn − (1− φ)n

]
.

Which gives

Hn =
φn − (1− φ)n√

5
.

9 Appendix

Theorem 9.1. The geometric multiplicity of an eigenvalue cannot exceed the algebraic multiplicity.

Proof. Let M be a square matrix of order n having an eigenvalue λ with geometric multiplicity r. That means

there are r independent eigenvectors u1, u2, . . . , ur corresponding to λ. To these eigenvectors by including

some more suitable n− r independent vectors we can form a basis B = {u1, u2, . . . , ur, ur+1, . . . , un} for Rn.

Let us consider the matrix

W = [u1 u2 . . . ur ur+1 . . . un].

Then

MW = W

[
λIr X

O Y

]
, (5)

for some matrices X ∈ Rr×(n−r), Y ∈ R(n−r)×(n−r).

By equation 5 we can write

(M − xIn)W = W

[
(λ− x)Ir X

O Y − xIn−r

]
.
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Taking determinants on both sides, we have

det(M − xIn) detW = detW det

[
(λ− x)Ir X

O Y − xIn−r

]
.

Since detW is nonzero, we have

det(M − xIn) = det

[
(λ− x)Ir X

O Y − xIn−r

]
.

det(M − xIn) is a characteristic polynomial; thus the eigenvalues are the roots of the polynomial

(λ− x)r det(Y − xIn−r),

thus λ has algebraic multiplicity at least r as λ can appear as roots of polynomial det(Y − xIn−r) too.

Theorem 9.2. For a symmetric matrix, any eigenvalue has the same geometric multiplicity and the

algebraic multiplicity.

Proof. The proof of Theorem 9.1 specialized for symmetric matrices: We can choose the basis B to

be a set of orthonormal vectors. So we have WWT = I, we can write

M = W

[
λIr X

O Y

]
WT .

Next, as M is symmetric we have,

M = W

[
λIr X

O Y

]
WT = W

[
λIr O

X Y

]
WT .

This Implies that X = O. So

MW = W

[
λIr O

O Y

]
. (6)

As we have seen

det(M − xIn) = (λ− x)r det(Y − xIn−r).

Suppose the algebraic connectivity of λ is more than r, that is, λ is also a root of det(Y − xIn−r). In other

words, λ is also an eigenvalue for Y , and let v be a corresponding eigenvector. Now consider a vector

[
0

v

]
∈ Rn.

By equation 6 we get
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MW

[
0

v

]
= W

[
λIr O

O Y

][
0

v

]

= λW

[
0

v

]
.

That means that W

[
0

v

]
is also an eigenvector of M associated with the eigenvalue λ. Observe that the vector

W

[
0

v

]
is a linear combination of the vectors ur+1, . . . , un. But as it is an eigenvector for M , it must be a

linear combination of the vectors u1, . . . , ur. But this makes the set of vectors u1, u2, . . . , ur, ur+1, . . . , un a

dependent set which is a contradiction as this set is a basis for Rn. So the algebraic connectivity of λ cannot

be more than r contrary to our assumption. Hence for symmetric matrices, the algebraic multiplicity and the

geometric multiplicity of any eigenvalue are the same.

Theorem 9.3. Let M be a symmetric matrix of order n. Then

M = V DV T , equivalently, V TMV = D,

where V is a orthogonal matrix, (that is, V TV = V V T = I) with columns v1, v2, . . . , vn which are the

eigenvectors of M corresponding to the eigenvalues λ1, . . . , λn, and D = diag(λ1, . . . , λn).

Proof. We prove the theorem using induction on n. The case n = 1 is true, since M = 1M1T . Assume that

the theorem is true when the order of matrix is n− 1.

Consider the case when the order of M is n. Using the eigenvector v1, let us make an orthonormal basis of

Rn, suppose this be S = {v1, x2, . . . , xn}. Note that since M is symmetric, for any i = 2, . . . , i = n

(Mxi)
T v1 = xTi M

T v1 = xTi Mv1 = λ1x
T
i v1 = 0. (7)

Now, let Q be an orthogonal matrix whose columns are v1, x2, . . . , xn. Then using 7

QTMQ =


− vT1 −
− xT2 −
...

...
...

− xTn −



| | . . . |

λ1v1 Mx2 . . . Mxn

| | . . . |



=

[
λ1 0

0 M̂

]
.

Note that M̂ is a symmetric matrix of order n− 1. By induction hypothesis, there exists an orthogonal matrix

11



Q̂ such that Q̂T M̂Q̂ = D̂ is a diagonal matrix. Considering the matrix

P =

[
1 0

0 Q̂

]
,

we see that the product

PTQTMQP =

[
1 0

0 Q̂

]T [
λ1 0

0 M̂

][
1 0

0 Q̂

]
(8)

=

[
λ1 0

0 D̂

]
(9)

is a diagonal matrix. As PTQTQP = I, matrix QP is an orthogonal matrix. By (8) QP contains the

eigenvectors of M and the corresponding eigenvalues are in the diagonal matrix PTQTMQP . It completes

the proof.
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