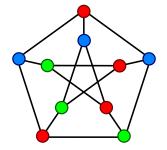
Albertson Conjecture Ranveer, IIT Indore

October 11, 2024

Albertson Conjecture is about a relationship between two interesting numbers, chromatic number $\chi(G)$, crossing number $\kappa(G)$ of a simple graph G (undirected, without loops, without multi-edges).

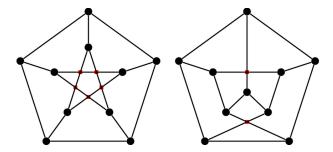
Definition 1. The chromatic number $\chi(G)$ of a graph G is the minimum number of colors required to color the vertices so that adjacent vertices get distinct color.

Example 1. The chromatic number of the Petersen graph is 3.



Definition 2. The crossing number $\kappa(G)$ of a graph G is the lowest number of edge crossings of a plane drawing of the graph.

Example 2. Following two are drawing of Petersen graph. In the drawing shown on left has 5 edge crossings while the right one has 2 edge crossing. The crossing number of Petersen graph is 2.



1 Albertson conjecture

Following is the Albertson conjecture (2007).

Conjecture 1. Among all graphs having chromatic number n, the complete graph K_n is the one with the smallest crossing number.

Or, equivalently

if a graph can be drawn with fewer crossings than K_n , then, according to the conjecture, it may be colored with fewer than n colors.

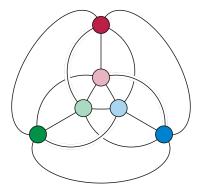
1.1 Richard K. Guy conjecture on the crossing number of K_n

Conjecture 2. (Richard K. Guy (1972)) The crossing number of the complete graph K_n is

$$\kappa(K_n) = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor.$$

It is known how to draw complete graphs with this many crossings, by placing the vertices in two concentric circles; what is unknown is whether there exists a better drawing with fewer crossings.

Below, the complete graph K_6 drawn with three crossings, the smallest crossing number of any graph requiring six colors.



2 A spectral bound on chromatic number

Theorem 2.1. (Brook) For any connected graph G with maximum degree Δ_G ,

$$\chi_G \le 1 + \Delta_G,$$

The above theorem is made tighter due to Wilf. Let $\lambda_1(G)$ be the largest eigenvalue of the adjacency matrix of a graph G.

Theorem 2.2. (Wilf) For any connected graph G,

$$\chi(G) \le 1 + \lambda_1(G).$$

Proof. As $\lambda_1(G)$ is nonnegative the result is trivial if $\chi(G) = 1$. Let $\chi(G) = p \ge 2$. Let S_p be the set of all the induced subgraphs of G whose chromatic number is p. Let $H \in S_p$ be a subgraph with minimum number of vertices among all the subgraphs in S_p . That is to say, $\chi(H \setminus \{i\}) \le p - 1$ for any vertex i of H.

We claim that the minimum degree $\delta(H) \ge p-1$. Indeed, suppose *i* is a vertex of *H* with degree less than p-1. Since $\chi(H \setminus \{i\}) \le (p-1)$, we can always properly color the vertices of $H \setminus \{i\}$ with p-1 colors. Since *i* is a vertex with degree less than p-1, we can also color the vertices of *H* properly with p-1 colors, a contradiction. Hence $\delta(H) \ge p-1$. Now

$$\lambda_1(G) \ge \lambda_1(H) \ge \delta(H) \ge p - 1.$$

Hence $\chi(G) \leq 1 + \lambda_1(G)$.

The equality in Theorem 2.2 holds if and only if G is a complete graph or a cycle graph having odd number of vertices.

For further references see Something Linky or go to the next url: http://www.overleaf.com or open the next file File.txt