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In an undirected graph G a spanning tree is a subgraph that is connected, acyclic, and covers all the
vertices of G. See graph in Figure 1(a), all its spanning trees are shown in Figure 2 (in green). Matrix-Tree
Theorem gives the number of spanning-tree in an undirected graph in a polynomial time, O(n2.37), where
n is the number of vertices in G. Before we state and prove the theorem we need some preliminaries and
notations.

Incidence matrix and Laplacian matrix

Let G be an undirected graph with vertex-set V (G) = {1, . . . , n} and edge-set E(G) = {e1, . . . , em}. To each
edge of G assign an orientation (direction), which is arbitrary. The incidence matrix of G, denoted by Q(G)
(often just Q), is the n×m matrix defined as follows. The rows and the columns of Q are indexed by 1, . . . , n
and 1, . . . ,m, respectively. The (i, j)-entry of Q is 0 if edge ej is not incident on vertex i, otherwise it is 1 or
-1 according as ej originates or terminates at i, respectively. The matrix L = QQT is called the Laplacian
matrix of G.

Example 1: The incidence matrix and Laplacian matrix for the graph in Figure 1 (a) corresponding to a
orientation of edges in Figure 1 (b) are as follows.

Q =


1 0 0 −1 1
0 −1 0 1 0
0 1 1 0 −1
−1 0 −1 0 0

 , L =


3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2


For any undirected graph check:

1. Adding all the rows of Q gives a zero row vector. Adding all the rows (columns) of L gives a zero row
(column) vector.

2. Relabelling the vertices and edges of G does not change the rank of Q, does not changes the rank,
determinant of L.

3. If G has n vertices and n − 1 edges, then G is either a tree or it is disconnected, that is, G has more
than one connected component.
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Figure 1: (a) A spanning tree is shown in green. (b) An arbitrary orientation and labelling of edges.
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Figure 2: All the spanning trees (in green) of the graph in Figure 1 (a).

4. If G is a tree having at least two vertices, then there are at least two pendant vertices (vertices which
are incident on exactly one edge).

Some more notations: Let A be an n × m matrix and S ⊂ {1, . . . , n}, T ⊂ {1, . . . ,m}, the no-
tation A[S|T ] denotes the sub-matrix of A whose rows and columns indices are in S, T, respectively. And
the notation A(S|T ) denotes the sub-matrix of A whose rows and columns indices are not in S, T, respectively.

Matrix-Tree Theorem: Any cofactor of L equals the number of spanning in G.

In order to prove the Matrix-Tree Theorem we first need the following two lemmas and Cauchy-Binet
Theorem.

Lemma 0.1: All the cofactors of L are equal.

Proof. As mentioned earlier the sum of all the rows of L gives a zero vector. Consider the sub-matrix L(1|1).
Its first row vector is [L(2, 2), L(2, 3), . . . , L(2, n)]. Now consider the sub-matrix L(2|1). Except its first
row add all the other rows to the first one, this gives the row vector −[L(2, 2), L(2, 3), . . . , L(2, n)]. Hence
det(L(2|1)) = −det(L(1|1)). Similarly, we can prove that det(L(i|i)) = (−1)j+i det(L(j|i)) for any i, j.
Hence all the cofactors are the same.

Lemma 0.2: Let G be a connected graph on n vertices and m edges. If T ⊂ {1, . . . ,m} with |T | = n− 1, and
let H be the subgraph of G consisting of edges that correspond only to the elements of T , then H forms a
spanning tree of G if and only if detQG[{1, . . . , n− 1}|T ] = ±1.

Proof. First, suppose that H is not a spanning tree of G. This is possible in two cases.

Case 1: H is subgraph on less than n vertices. Suppose |V (H)| = k ≤ n− 1.

1. If vertex n /∈ V (H), then the submatrix QG[{1, . . . , n − 1}|T ] is the incidence matrix QH with ad-
ditional n − 1 − k zero rows. Thus the column sum of QG[{1, . . . , n − 1}|T ] gives a zero row, hence
detQG[{1, . . . , n− 1}|T ] = 0.

2. If n ∈ V (H), then there will be at least one vertex in {1, . . . , n − 1} which is not in V (H). The row
corresponding to this vertex is all-zero in QG[{1, . . . , n− 1}|T ], hence detQG[{1, . . . , n− 1}|T ] = 0.

Case 2: H is an spanning subgraph on n vertices but not a tree. Note that as there are n− 1 edges, in this
case there has to be at least two components in H (observation 3). Let C be a connected component of H,

2



and without loss of generality let n /∈ V (C). Without loss of generality, let V (C) = {1, . . . , k}, k < n. The
sub-matrix QG[{1, . . . , n− 1}|T ] can be written as

QG[{1, . . . , n− 1}|T ] =

[
QC 0

0 Q̃C

]
,

where QC is the incidence matrix of a component C, and Q̃C is the incidence matrix of subgraph induced by
the edges of H not in C. In QG[{1, . . . , n− 1}|T ] adding the rows 2, . . . , k to the first row results in the zero
row. Hence, detQG[{1, . . . , n− 1}|T ] = 0.

Conversely, suppose H is a spanning tree of G on the edges e1, . . . , en−1. Note that, H must have at least
two vertices with degree 1. Pick one such a vertex, and without loss of generality assume that e1 is incident
on this vertex, now label this vertex as 1. Next, consider the tree on V (H) \ 1 vertices, and pick a vertex
with degree 1 in it, assume that e2 is incident on this vertex, and label this vertex as 2. Continue such a
labeling of vertices for all edges e1, . . . , en−1. This relabelling of vertices and edges gives a n− 1 order square
matrix which is a permutation of rows and columns of matrix QG[{1, . . . , n− 1}|T ]. Note that this resulting
matrix is a lower triangular matrix with diagonal entries ±1. Hence, detQG[{1, . . . , n− 1}|T ] = ±1.

We are now just one step away from proving the Matrix-Tree Theorem. For the final step we need the
following famous theorem known as Cauchy-Binet Theorem.

Theorem 0.3: (Cauchy-Binet Theorem): Let A and B be two n×m and m×n matrices, respectively, for
some positive integers n and m with n ≤ m. Then

detAB =
∑
T

detA[{1, . . . , n}|T ] detB[T |{1, . . . , n}],

where the summation runs over all subsets T of {1, . . . ,m} with |T | = n.

Example 2: Consider A =

[
2 −1 3
0 −1 0

]
, B =

 3 −1
−1 2
−1 −1

 . AB =

[
4 −7
1 −2

]
, detAB = −1. By Cauchy-Binet

Theorem

detAB = det

[
2 −1
0 −1

]
det

[
3 −1
−1 2

]
+ det

[
2 3
0 0

]
det

[
3 −1
−1 −1

]
+ det

[
−1 3
−1 0

]
det

[
−1 2
−1 −1

]
=− 1.

We are now ready to prove the Matrix-Tree Theorem.

Proof of Matrix-Tree Theorem: Without loss of generality we prove that detLG(n|n) equals the
number of spanning trees in G.

detLG(n|n) = detQGQ
T
G(n|n)

=
∑
T

(detQG[1, . . . , n− 1|T ] detQT
G[T |1, . . . , n− 1]) (Cauchy-Binet Theorem)

=
∑
T

(detQG[1, . . . , n− 1|T ])2,

where the summation runs over all the subsets T of {1, . . . ,m}, with |T | = n−1. By Lemma 0.2 detQG[1, . . . , n−
1|T ] = ±1 when the edges corresponding to T forms a spanning tree of G. This completes the proof.

For more on Matrix-Tree Theorem see [1, 2].
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