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In an undirected graph G a spanning tree is a subgraph that is connected, acyclic, and covers all the
vertices of G. See graph in Figure 1(a), all its spanning trees are shown in Figure 2 (in green). Matrix-Tree
Theorem gives the number of spanning-tree in an undirected graph in a polynomial time, O(n?37), where
n is the number of vertices in G. Before we state and prove the theorem we need some preliminaries and
notations.

Incidence matrix and Laplacian matrix

Let G be an undirected graph with vertex-set V(G) = {1,...,n} and edge-set E(G) = {e1,...,en}. To each
edge of G assign an orientation (direction), which is arbitrary. The incidence matriz of G, denoted by Q(G)
(often just @), is the n x m matrix defined as follows. The rows and the columns of @) are indexed by 1,...,n
and 1,...,m, respectively. The (4, j)-entry of @ is 0 if edge €; is not incident on vertex ¢, otherwise it is 1 or
-1 according as e; originates or terminates at i, respectively. The matrix L = QQT is called the Laplacian
matriz of G.

Example 1: The incidence matrix and Laplacian matrix for the graph in Figure 1 (a) corresponding to a
orientation of edges in Figure 1 (b) are as follows.

1 0 0 -1 1 3 -1 -1 -1
0 -1 0 1 0 -1 2 -1 0
Q= 0 1 1 0o -1’ L= -1 -1 3 -1
-1 0 -1 0 0 -1 0 -1 2

For any undirected graph check:

1. Adding all the rows of ) gives a zero row vector. Adding all the rows (columns) of L gives a zero row
(column) vector.

2. Relabelling the vertices and edges of G does not change the rank of ), does not changes the rank,
determinant of L.

3. If G has n vertices and n — 1 edges, then G is either a tree or it is disconnected, that is, G has more
than one connected component.

Figure 1: (a) A spanning tree is shown in green. (b) An arbitrary orientation and labelling of edges.
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Figure 2: All the spanning trees (in green) of the graph in Figure 1 (a).

4. If G is a tree having at least two vertices, then there are at least two pendant vertices (vertices which
are incident on exactly one edge).

Some more notations: Let A be an n x m matrix and S C {1,...,n},T C {1,...,m}, the no-
tation A[S|T] denotes the sub-matrix of A whose rows and columns indices are in S, T, respectively. And
the notation A(S|T) denotes the sub-matrix of A whose rows and columns indices are not in S, T', respectively.

Matrix-Tree Theorem: Any cofactor of L equals the number of spanning in G.

In order to prove the Matrix-Tree Theorem we first need the following two lemmas and Cauchy-Binet
Theorem.

Lemma 0.1: All the cofactors of L are equal.

Proof. As mentioned earlier the sum of all the rows of L gives a zero vector. Consider the sub-matrix L(1]1).
Its first row vector is [L(2,2),L(2,3),...,L(2,n)]. Now consider the sub-matrix L(2|1). Except its first
row add all the other rows to the first one, this gives the row vector —[L(2,2), L(2,3),...,L(2,n)]. Hence
det(L(2|1)) = —det(L(1]1)). Similarly, we can prove that det(L(ili)) = (—1)7T*det(L(j|i)) for any i,j.
Hence all the cofactors are the same.

O

Lemma 0.2: Let G be a connected graph on n vertices and m edges. If T'C {1,...,m} with |T| =n —1, and
let H be the subgraph of G consisting of edges that correspond only to the elements of T', then H forms a
spanning tree of G if and only if det Q¢[{1,...,n — 1}|T] = 1.

Proof. First, suppose that H is not a spanning tree of G. This is possible in two cases.
Case 1: H is subgraph on less than n vertices. Suppose |[V(H)| =k <n —1.

1. If vertex n ¢ V(H), then the submatrix Qg[{1,...,n — 1}|T] is the incidence matrix Qp with ad-
ditional n — 1 — k zero rows. Thus the column sum of Qg[{1,...,n — 1}|T] gives a zero row, hence
det Q¢[{1,...,n—1}|T] = 0.

2. If n € V(H), then there will be at least one vertex in {1,...,n — 1} which is not in V(H). The row
corresponding to this vertex is all-zero in Qg[{1,...,n — 1}|T], hence det Q¢[{1,...,n — 1}|T] = 0.

Case 2: H is an spanning subgraph on n vertices but not a tree. Note that as there are n — 1 edges, in this
case there has to be at least two components in H (observation 3). Let C be a connected component of H,



and without loss of generality let n ¢ V(C). Without loss of generality, let V(C) = {1,...,k},k < n. The
sub-matrix Qg[{1,...,n — 1}|T] can be written as

Qcl{1,....n—1}|T] = [ro QOC]’

where Q¢ is the incidence matrix of a component C, and Q¢ is the incidence matrix of subgraph induced by
the edges of H not in C. In Q¢[{1,...,n — 1}|T] adding the rows 2, ...,k to the first row results in the zero
row. Hence, det Q¢[{1,...,n—1}|T] = 0.

Conversely, suppose H is a spanning tree of G on the edges ey, ..., e,_1. Note that, H must have at least
two vertices with degree 1. Pick one such a vertex, and without loss of generality assume that e; is incident
on this vertex, now label this vertex as 1. Next, consider the tree on V(H) \ 1 vertices, and pick a vertex
with degree 1 in it, assume that ey is incident on this vertex, and label this vertex as 2. Continue such a

labeling of vertices for all edges e, ..., e,_1. This relabelling of vertices and edges gives a n — 1 order square
matrix which is a permutation of rows and columns of matrix Q¢[{1,...,n —1}|T]. Note that this resulting
matrix is a lower triangular matrix with diagonal entries £1. Hence, det Qg[{1,...,n — 1}|T] = 1. O

We are now just one step away from proving the Matrix-Tree Theorem. For the final step we need the
following famous theorem known as Cauchy-Binet Theorem.

Theorem 0.3: (Cauchy-Binet Theorem): Let A and B be two n x m and m X n matrices, respectively, for
some positive integers n and m with n < m. Then

det AB =" det A[{1,...,n}|T]det B[T|{1,...,n}],
T

where the summation runs over all subsets T of {1,...,m} with |T| = n.
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Example 2: Consider A = [2 -1 3} , B=|-1 2|. AB= [4 9

0 -1 0 1 1 } , det AB = —1. By Cauchy-Binet

Theorem

2 -1 3 -1 2 3 3 -1
det AB =det {O 1] det [ 9 } + det [0 O] det {1 J

1
-1 3 -1 2
van [ au 1 2]
=-—1.
We are now ready to prove the Matrix-Tree Theorem.

Proof of Matrix-Tree Theorem: Without loss of generality we prove that det Lg(n|n) equals the
number of spanning trees in G.

det Lg(n|n) =det QeQE(n|n)
= Z(det Qcll,...,n—1|T)det QL[T|1,...,n —1]) (Cauchy-Binet Theorem)
T

— Z(det QG[]_, e, — 1‘T])27

T

where the summation runs over all the subsets T of {1, ..., m}, with |T'| = n—1. By Lemma 0.2 det Q¢[1,...,n—
1|T] = £1 when the edges corresponding to T forms a spanning tree of G. This completes the proof.
For more on Matrix-Tree Theorem see [1, 2].
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